Microsize antibodies for $99 | Learn More >>

Monkey Actin Filament Polymerization

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Western Blotting

Background: Rac and Cdc42 are members of the Rho-GTPase family. In mammals, Rac exists as three isoforms, Rac1, Rac2 and Rac3, which are highly similar in sequence. Rac1 and Cdc42, the most widely studied of this group, are ubiquitously expressed. Rac2 is expressed in cells of hematopoietic origin, and Rac3, while highly expressed in brain, is also found in many other tissues. Rac and Cdc42 play key signaling roles in cytoskeletal reorganization, membrane trafficking, transcriptional regulation, cell growth and development (1). GTP binding stimulates the activity of Rac/Cdc42, and the hydrolysis of GTP to GDP through the protein's intrinsic GTPase activity, rendering it inactive. GTP hydrolysis is aided by GTPase activating proteins (GAPs), while exchange of GDP for GTP is facilitated by guanine nucleotide exchange factors (GEFs). Another level of regulation is achieved through the binding of RhoGDI, a guanine nucleotide dissociation inhibitor, which retains Rho family GTPases, including Rac and Cdc42, in their inactive GDP-bound state (2,3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Activation of protein kinase C (PKC) is one of the earliest events in a cascade that controls a variety of cellular responses, including secretion, gene expression, proliferation, and muscle contraction (1,2). PKC isoforms belong to three groups based on calcium dependency and activators. Classical PKCs are calcium-dependent via their C2 domains and are activated by phosphatidylserine (PS), diacylglycerol (DAG), and phorbol esters (TPA, PMA) through their cysteine-rich C1 domains. Both novel and atypical PKCs are calcium-independent, but only novel PKCs are activated by PS, DAG, and phorbol esters (3-5). Members of these three PKC groups contain a pseudo-substrate or autoinhibitory domain that binds to substrate-binding sites in the catalytic domain to prevent activation in the absence of cofactors or activators. Control of PKC activity is regulated through three distinct phosphorylation events. Phosphorylation occurs in vivo at Thr500 in the activation loop, at Thr641 through autophosphorylation, and at the carboxy-terminal hydrophobic site Ser660 (2). Atypical PKC isoforms lack hydrophobic region phosphorylation, which correlates with the presence of glutamic acid rather than the serine or threonine residues found in more typical PKC isoforms. The enzyme PDK1 or a close relative is responsible for PKC activation. A recent addition to the PKC superfamily is PKCμ (PKD), which is regulated by DAG and TPA through its C1 domain. PKD is distinguished by the presence of a PH domain and by its unique substrate recognition and Golgi localization (6). PKC-related kinases (PRK) lack the C1 domain and do not respond to DAG or phorbol esters. Phosphatidylinositol lipids activate PRKs, and small Rho-family GTPases bind to the homology region 1 (HR1) to regulate PRK kinase activity (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Cortactin is a cortical actin binding protein. Its amino-terminal acidic domain (NTA) associates with the Arp2/3 and WASP complex at F-actin branches. The central region of the protein contains six repeats of 37 amino acids that are important in F-actin binding and cross-linking. The carboxy-terminus contains a proline-rich region and an SH3 domain that can interact with numerous scaffolding proteins, such as CortBP1 and Shank3 (1,2). Cortactin is involved in signaling events that coordinate actin reorganization during cell movement. The human cortactin homologue EMS1 is overexpressed in numerous cancers with poor patient prognosis (3). Cortactin may also play an important role in the organization of transmembrane receptors at postsynaptic densities (PSD) and tight junctions by linking scaffolding proteins to the actin network (4).Cortactin is phosphorylated at tyrosine residues 421, 466, and 482. Tyrosine phosphorylation of cortactin regulates cell motility (5), rac1-mediated actin dynamics (6), cadherin-dependent adhesion (7), chemokine trafficking and chemokine-dependent chemotaxis (8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rac and Cdc42 are members of the Rho-GTPase family. In mammals, Rac exists as three isoforms, Rac1, Rac2 and Rac3, which are highly similar in sequence. Rac1 and Cdc42, the most widely studied of this group, are ubiquitously expressed. Rac2 is expressed in cells of hematopoietic origin, and Rac3, while highly expressed in brain, is also found in many other tissues. Rac and Cdc42 play key signaling roles in cytoskeletal reorganization, membrane trafficking, transcriptional regulation, cell growth and development (1). GTP binding stimulates the activity of Rac/Cdc42, and the hydrolysis of GTP to GDP through the protein's intrinsic GTPase activity, rendering it inactive. GTP hydrolysis is aided by GTPase activating proteins (GAPs), while exchange of GDP for GTP is facilitated by guanine nucleotide exchange factors (GEFs). Another level of regulation is achieved through the binding of RhoGDI, a guanine nucleotide dissociation inhibitor, which retains Rho family GTPases, including Rac and Cdc42, in their inactive GDP-bound state (2,3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Dog, Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The dynamic polymerization and depolymerization of actin filaments, a process governed by external and internal signaling events, is vital for cell motility (immune cell function, migration, invasion, metastasis, angiogenesis), cell division and adhesion. Among the many regulators of actin dynamics are profilins. Profilins are conserved actin binding proteins that affect the rate of actin polymerization by binding actin monomers and promoting the exchange of ADP for ATP (reviewed in 1). Profilins bind to proteins involved in the regulation of actin dynamics including palladin (2), dynamin-1 (3), VASP (4) and N-WASP (5). In mice, knockout of the ubiquitously expressed profilin-1 indicates that the protein is essential for embryonic development (6). Profilin-2 is primarily expressed in brain and functions in the regulation of neurite outgrowth (7), membrane trafficking and endocytosis (3). The recently cloned profilin-3 is expressed in kidney and testes (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Cortactin is a cortical actin binding protein. Its amino-terminal acidic domain (NTA) associates with the Arp2/3 and WASP complex at F-actin branches. The central region of the protein contains six repeats of 37 amino acids that are important in F-actin binding and cross-linking. The carboxy-terminus contains a proline-rich region and an SH3 domain that can interact with numerous scaffolding proteins, such as CortBP1 and Shank3 (1,2). Cortactin is involved in signaling events that coordinate actin reorganization during cell movement. The human cortactin homologue EMS1 is overexpressed in numerous cancers with poor patient prognosis (3). Cortactin may also play an important role in the organization of transmembrane receptors at postsynaptic densities (PSD) and tight junctions by linking scaffolding proteins to the actin network (4).Cortactin is phosphorylated at tyrosine residues 421, 466, and 482. Tyrosine phosphorylation of cortactin regulates cell motility (5), rac1-mediated actin dynamics (6), cadherin-dependent adhesion (7), chemokine trafficking and chemokine-dependent chemotaxis (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Bovine, Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Cortactin is a cortical actin binding protein. Its amino-terminal acidic domain (NTA) associates with the Arp2/3 and WASP complex at F-actin branches. The central region of the protein contains six repeats of 37 amino acids that are important in F-actin binding and cross-linking. The carboxy-terminus contains a proline-rich region and an SH3 domain that can interact with numerous scaffolding proteins, such as CortBP1 and Shank3 (1,2). Cortactin is involved in signaling events that coordinate actin reorganization during cell movement. The human cortactin homologue EMS1 is overexpressed in numerous cancers with poor patient prognosis (3). Cortactin may also play an important role in the organization of transmembrane receptors at postsynaptic densities (PSD) and tight junctions by linking scaffolding proteins to the actin network (4).Cortactin is phosphorylated at tyrosine residues 421, 466, and 482. Tyrosine phosphorylation of cortactin regulates cell motility (5), rac1-mediated actin dynamics (6), cadherin-dependent adhesion (7), chemokine trafficking and chemokine-dependent chemotaxis (8).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Activation of protein kinase C (PKC) is one of the earliest events in a cascade that controls a variety of cellular responses, including secretion, gene expression, proliferation, and muscle contraction (1,2). PKC isoforms belong to three groups based on calcium dependency and activators. Classical PKCs are calcium-dependent via their C2 domains and are activated by phosphatidylserine (PS), diacylglycerol (DAG), and phorbol esters (TPA, PMA) through their cysteine-rich C1 domains. Both novel and atypical PKCs are calcium-independent, but only novel PKCs are activated by PS, DAG, and phorbol esters (3-5). Members of these three PKC groups contain a pseudo-substrate or autoinhibitory domain that binds to substrate-binding sites in the catalytic domain to prevent activation in the absence of cofactors or activators. Control of PKC activity is regulated through three distinct phosphorylation events. Phosphorylation occurs in vivo at Thr500 in the activation loop, at Thr641 through autophosphorylation, and at the carboxy-terminal hydrophobic site Ser660 (2). Atypical PKC isoforms lack hydrophobic region phosphorylation, which correlates with the presence of glutamic acid rather than the serine or threonine residues found in more typical PKC isoforms. The enzyme PDK1 or a close relative is responsible for PKC activation. A recent addition to the PKC superfamily is PKCμ (PKD), which is regulated by DAG and TPA through its C1 domain. PKD is distinguished by the presence of a PH domain and by its unique substrate recognition and Golgi localization (6). PKC-related kinases (PRK) lack the C1 domain and do not respond to DAG or phorbol esters. Phosphatidylinositol lipids activate PRKs, and small Rho-family GTPases bind to the homology region 1 (HR1) to regulate PRK kinase activity (7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Activation of protein kinase C (PKC) is one of the earliest events in a cascade that controls a variety of cellular responses, including secretion, gene expression, proliferation, and muscle contraction (1,2). PKC isoforms belong to three groups based on calcium dependency and activators. Classical PKCs are calcium-dependent via their C2 domains and are activated by phosphatidylserine (PS), diacylglycerol (DAG), and phorbol esters (TPA, PMA) through their cysteine-rich C1 domains. Both novel and atypical PKCs are calcium-independent, but only novel PKCs are activated by PS, DAG, and phorbol esters (3-5). Members of these three PKC groups contain a pseudo-substrate or autoinhibitory domain that binds to substrate-binding sites in the catalytic domain to prevent activation in the absence of cofactors or activators. Control of PKC activity is regulated through three distinct phosphorylation events. Phosphorylation occurs in vivo at Thr500 in the activation loop, at Thr641 through autophosphorylation, and at the carboxy-terminal hydrophobic site Ser660 (2). Atypical PKC isoforms lack hydrophobic region phosphorylation, which correlates with the presence of glutamic acid rather than the serine or threonine residues found in more typical PKC isoforms. The enzyme PDK1 or a close relative is responsible for PKC activation. A recent addition to the PKC superfamily is PKCμ (PKD), which is regulated by DAG and TPA through its C1 domain. PKD is distinguished by the presence of a PH domain and by its unique substrate recognition and Golgi localization (6). PKC-related kinases (PRK) lack the C1 domain and do not respond to DAG or phorbol esters. Phosphatidylinositol lipids activate PRKs, and small Rho-family GTPases bind to the homology region 1 (HR1) to regulate PRK kinase activity (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Gelsolin (actin-depolymerizing factor, ADF, AGEL, Brevin) is an 83 kDa protein that shares structural and functional homology to villin and adseverin/scinderin (1,2). Gelsolin plays an important role in actin filament assembly by capping and severing actin proteins in a Ca2+-dependent manner (3,4). Gelsolin is important for cellular events (e.g., membrane ruffling, chemotaxis, ciliogenesis) that require cytoskeletal remodeling (3). Accordingly, cells from gelsolin knockout mice exhibit motility defects, including a failure to ruffle in response to growth factor stimulation (5,6). In humans, defects in gelsolin have been linked to amyloidosis type 5 (AMYL5), a hereditary disease characterized by cranial neuropathy, which appears to result from gelsolin amyloid deposition (7).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Guinea Pig, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Vasodilator-stimulated phosphoprotein (VASP) was originally characterized as a substrate of both cGMP- and cAMP-dependent kinases (PKG and PKA, or cGPK and cAPK, respectively) (1). It is now believed that VASP belongs to the Ena/VASP family of adaptor proteins linking the cytoskeletal system to the signal transduction pathways and that it functions in cytoskeletal organization, fibroblast migration, platelet activation and axon guidance (2,3). Three phosphorylation sites, Ser157, Ser239, and Thr278, have been identified. Ser239 is the major PKG phosphorylation site while Ser157 is the major PKA phosphorylation site (4). Evidence suggests that VASP phosphorylation reduces its association with actin and has a negative effect on actin polymerization (5). Phosphorylation at Ser239 of VASP is a useful marker for monitoring PKG activation and signaling (6,7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Vasodilator-stimulated phosphoprotein (VASP) was originally characterized as a substrate of both cGMP- and cAMP-dependent kinases (PKG and PKA, or cGPK and cAPK, respectively) (1). It is now believed that VASP belongs to the Ena/VASP family of adaptor proteins linking the cytoskeletal system to the signal transduction pathways and that it functions in cytoskeletal organization, fibroblast migration, platelet activation and axon guidance (2,3). Three phosphorylation sites, Ser157, Ser239, and Thr278, have been identified. Ser239 is the major PKG phosphorylation site while Ser157 is the major PKA phosphorylation site (4). Evidence suggests that VASP phosphorylation reduces its association with actin and has a negative effect on actin polymerization (5). Phosphorylation at Ser239 of VASP is a useful marker for monitoring PKG activation and signaling (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Phosphoinositide-3,4,5-triphosphate (PtdIns(3,4,5)P3)-dependent Rac exchanger 1 (PREX1) is a Rac-specific GTP-exchange factor (GEF) regulated by heterotrimeric G-protein β/γ subunits and the lipid second messenger PtdIns(3,4,5)P3 (1-4). PREX1 contains two DEP (Dishevelled, Egl-10, and Pleckstrin homology) domains that coordinate heterotrimeric G-protein signaling. It also contains a Dbl-homology domain, which exhibits Rac-GEF activity, and PH and PDZ domains for interacting with upstream and downstream signaling components (1). Originally shown to modulate cellular migration of neutrophils by Rac2 activation (5-8), it is clear that PREX1 plays a broader role in modulating cell migration. PREX1 promotes metastasis of prostate cancer and melanoma cells, affects endothelial junction integrity, and is required for platelet generation and function (9-14). Research studies suggest that PREX1 plays an essential role in mediating ErbB-dependent signaling events in breast cancer by coordinating Rac activation in response to paracrine signals within the tumor microenvironment. Activation of PREX1 downstream of ErbB3 and EGFR chemokine receptors (CXCR4) promotes Rac activation, increased migration, proliferation, tumorigenesis, and metastasis in breast cancer cells (15,16). Consistent with this observation, deletion of PREX1 expression in mice results in resistance to melanoma metastasis (11). Expression of PREX1 in human tumors transplanted into mice inversely correlates with increased tumor progression and poor survival (15). Additional research studies suggest that PREX Rac-GEF activity is enhanced by phosphorylation in response to growth factors or hormones, and may require coincident dephosphorylation of two PH domain serine residues. The upstream kinases and precise regulatory mechanism remains elusive (15,17).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Vasodilator-stimulated phosphoprotein (VASP) was originally characterized as a substrate of both cGMP- and cAMP-dependent kinases (PKG and PKA, or cGPK and cAPK, respectively) (1). It is now believed that VASP belongs to the Ena/VASP family of adaptor proteins linking the cytoskeletal system to the signal transduction pathways and that it functions in cytoskeletal organization, fibroblast migration, platelet activation and axon guidance (2,3). Three phosphorylation sites, Ser157, Ser239, and Thr278, have been identified. Ser239 is the major PKG phosphorylation site while Ser157 is the major PKA phosphorylation site (4). Evidence suggests that VASP phosphorylation reduces its association with actin and has a negative effect on actin polymerization (5). Phosphorylation at Ser239 of VASP is a useful marker for monitoring PKG activation and signaling (6,7).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Vasodilator-stimulated phosphoprotein (VASP) was originally characterized as a substrate of both cGMP- and cAMP-dependent kinases (PKG and PKA, or cGPK and cAPK, respectively) (1). It is now believed that VASP belongs to the Ena/VASP family of adaptor proteins linking the cytoskeletal system to the signal transduction pathways and that it functions in cytoskeletal organization, fibroblast migration, platelet activation and axon guidance (2,3). Three phosphorylation sites, Ser157, Ser239, and Thr278, have been identified. Ser239 is the major PKG phosphorylation site while Ser157 is the major PKA phosphorylation site (4). Evidence suggests that VASP phosphorylation reduces its association with actin and has a negative effect on actin polymerization (5). Phosphorylation at Ser239 of VASP is a useful marker for monitoring PKG activation and signaling (6,7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Guinea Pig, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The p21-activated kinase (PAK) family of serine/threonine kinases is engaged in multiple cellular processes, including cytoskeletal reorganization, MAPK signaling, apoptotic signaling, control of phagocyte NADPH oxidase, and growth factor-induced neurite outgrowth (1,2). Several mechanisms that induce PAK activity have been reported. Binding of Rac/Cdc42 to the CRIB (or PBD) domain near the amino terminus of PAK causes autophosphorylation and conformational changes in PAK (1). Phosphorylation of PAK1 at Thr423 by PDK induces activation of PAK1 (3). Several autophosphorylation sites have been identified, including Ser199 and Ser204 of PAK1 and Ser192 and Ser197 of PAK2 (4,5). Because the autophosphorylation sites are located in the amino-terminal inhibitory domain, it has been hypothesized that modification in this region prevents the kinase from reverting to an inactive conformation (6). Research indicates that phosphorylation at Ser144 of PAK1 or Ser139 of PAK3 (located in the kinase inhibitory domain) affects kinase activity (7). Phosphorylation at Ser21 of PAK1 or Ser20 of PAK2 regulates binding with the adaptor protein Nck (8). PAK4, PAK5, and PAK6 have lower sequence similarity with PAK1-3 in the amino-terminal regulatory region (9). Phosphorylation at Ser474 of PAK4, a site analogous to Thr423 of PAK1, may play a pivotal role in regulating the activity and function of PAK4 (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: NCK1 (also known as NCK or NCKα) is a broadly expressed oncogenic adapter protein consisting of three SH3 domains and one SH2 domain (1-3). NCK1 becomes phosphorylated upon activation of variety of cell surface receptors and is involved in actin cytoskeletal organization induced by many stimuli (4-6). NCK2 (also known as NCKβ), a homolog of NCK1, has an overlapping expression pattern and redundant functions with NCK1 (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: NCK1 (also known as NCK or NCKα) is a broadly expressed oncogenic adapter protein consisting of three SH3 domains and one SH2 domain (1-3). NCK1 becomes phosphorylated upon activation of variety of cell surface receptors and is involved in actin cytoskeletal organization induced by many stimuli (4-6). NCK2 (also known as NCKβ), a homolog of NCK1, has an overlapping expression pattern and redundant functions with NCK1 (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Twinfilin is an actin monomer-binding protein found in all eukaryotes (1). Mammals have three isoforms. Twinfilin-1 and twinfilin-2a are expressed in most non-muscle cell types, whereas twinfilin-2b is the main isoform in adult heart and skeletal muscle (2). Twinfilins are composed of two ADF-homology domains connected by a 30 kDa linker region. All twinfilins have been shown to form a 1:1 complex with G-actin, but not F-actin (reviewed in 3). Twinfilin-1 was originally known as A6 protein tyrosine kinase and thought to be part of a novel class of protein kinases. However, the protein was renamed after further studies showed no evidence of tyrosine kinase activity (4). Twinfilin-1 helps to prevent the actin filament assembly by forming a complex with actin monomers and, in mammals, has been shown to cap the filament barbed ends. It has been suggested that this regulates cell motility (5). Suppression of twinfilin-1 has also been shown to slow lymphoma cell migration to lymph nodes (6).