Microsize antibodies for $99 | Learn More >>

Monkey Glycerophospholipid Metabolic Process

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Phosphatidylinositol-5-phosphate 4-kinases (PIP4K) synthesize phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), a key precursor in phosphoinositide signaling that directly modulates the activity of signaling proteins and cellular processes. There are two subfamilies of PIP kinases, type I and II, that generate PtdIns(4,5)P2 from distinct substrate pools. PIP4 type I kinases use PtdIns5P as a substrate, whereas PIP5 type II kinases use PtdIns4P (1,2). In mammalian cells, three isoforms of each PIP4K and PIP5K subfamily, encoded by distinct genes, have been characterized (3-7). All PIP kinases are stimulated by phosphatidic acid, extensively regulated by ARF and Rho GTPases, and inhibited by protein kinase A and PI-stimulated autophosphorylation (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cytosolic phospholipase A2 (cPLA2) is a ubiquitously distributed enzyme that catalyzes the hydrolysis of the sn-2 acyl bond of glycerolipids to produce lysophospholipids and release arachidonic acid (1). cPLA2 has been implicated in diverse cellular responses such as mitogenesis, differentiation, inflammation and cytotoxicity (1). Calcium binding to the amino-terminal CalB domain of cPLA2 promotes the translocation of cPLA2 from cytosol to membrane, where cPLA2 cleaves arachidonic acid from natural membrane (2). Phosphorylation of cPLA2 by MAPK (p42/44 and p38) at Ser505 (3,4) and Ser727 (5) stimulates its catalytic activity.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cytosolic phospholipase A2 (cPLA2) is a ubiquitously distributed enzyme that catalyzes the hydrolysis of the sn-2 acyl bond of glycerolipids to produce lysophospholipids and release arachidonic acid (1). cPLA2 has been implicated in diverse cellular responses such as mitogenesis, differentiation, inflammation and cytotoxicity (1). Calcium binding to the amino-terminal CalB domain of cPLA2 promotes the translocation of cPLA2 from cytosol to membrane, where cPLA2 cleaves arachidonic acid from natural membrane (2). Phosphorylation of cPLA2 by MAPK (p42/44 and p38) at Ser505 (3,4) and Ser727 (5) stimulates its catalytic activity.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CTP:phosphocholine cytidylyltransferase (CCT) is a critical enzyme that regulates the CDP-choline pathway for the biosynthesis of phosphatidylcholine. Three distinct CCT isoforms are found in mammals, including CCTα, CCTβ2, and CCTβ3 (1,2). CCTα is the major isoform that is expressed in most tissues (3). CCTα is essential in the synthesis and secretion of surfactant by alveolar epithelial cells and is important in maintaining the phosphatidylcholine level that regulates lipoprotein assembly and secretion in hepatocytes (4,5). CCTα is a major component in membrane biogenesis during cytokine secretion by stimulated macrophages (6). Monoubiquitination of CCTα prevents it from entering the nucleus and leads to its degradation by lysosome (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Choline kinase (ChoK) catalyzes the phosphorylation of choline, a key step in the biosynthesis of the membrane phospholipid phosphatidylcholine. At least three ChoK isoforms exist in mammalian cells, α-1, α-2, and β. The two α isoforms are transcribed from the same CHKA gene as splice variants, while the β isoform resides on a separate CHKB gene (reviewed in 1).Research studies indicate that ChoKα levels affect signaling through MAPK and Akt pathways (2,3). Investigators have shown that ChoKα plays a role in proliferation and carcinogenesis and is highly expressed/activated in human cancers (4-7). Additional research studies suggest ChoKα may be a potential target for cancer therapy (8).