20% off purchase of 3 or more products* | Learn More >>

Monkey Myosin Binding

Also showing Monkey Myosin v Binding

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Actin, a ubiquitous eukaryotic protein, is the major component of the cytoskeleton. At least six isoforms are known in mammals. Nonmuscle β- and γ-actin, also known as cytoplasmic actin, are predominantly expressed in nonmuscle cells, controlling cell structure and motility (1). α-cardiac and α-skeletal actin are expressed in striated cardiac and skeletal muscles, respectively; two smooth muscle actins, α- and γ-actin, are found primarily in vascular smooth muscle and enteric smooth muscle, respectively. These actin isoforms regulate the contractile potential of muscle cells (1). Actin exists mainly as a fibrous polymer, F-actin. In response to cytoskeletal reorganizing signals during processes such as cytokinesis, endocytosis, or stress, cofilin promotes fragmentation and depolymerization of F-actin, resulting in an increase in the monomeric globular form, G-actin (2). The ARP2/3 complex stabilizes F-actin fragments and promotes formation of new actin filaments (2). Research studies have shown that actin is hyperphosphorylated in primary breast tumors (3). Cleavage of actin under apoptotic conditions has been observed in vitro and in cardiac and skeletal muscle, as shown in research studies (4-6). Actin cleavage by caspase-3 may accelerate ubiquitin/proteasome-dependent muscle proteolysis (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Actin, a ubiquitous eukaryotic protein, is the major component of the cytoskeleton. At least six isoforms are known in mammals. Nonmuscle β- and γ-actin, also known as cytoplasmic actin, are predominantly expressed in nonmuscle cells, controlling cell structure and motility (1). α-cardiac and α-skeletal actin are expressed in striated cardiac and skeletal muscles, respectively; two smooth muscle actins, α- and γ-actin, are found primarily in vascular smooth muscle and enteric smooth muscle, respectively. These actin isoforms regulate the contractile potential of muscle cells (1). Actin exists mainly as a fibrous polymer, F-actin. In response to cytoskeletal reorganizing signals during processes such as cytokinesis, endocytosis, or stress, cofilin promotes fragmentation and depolymerization of F-actin, resulting in an increase in the monomeric globular form, G-actin (2). The ARP2/3 complex stabilizes F-actin fragments and promotes formation of new actin filaments (2). Research studies have shown that actin is hyperphosphorylated in primary breast tumors (3). Cleavage of actin under apoptotic conditions has been observed in vitro and in cardiac and skeletal muscle, as shown in research studies (4-6). Actin cleavage by caspase-3 may accelerate ubiquitin/proteasome-dependent muscle proteolysis (6).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Pan-Actin (D18C11) Rabbit mAb #8456.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Actin, a ubiquitous eukaryotic protein, is the major component of the cytoskeleton. At least six isoforms are known in mammals. Nonmuscle β- and γ-actin, also known as cytoplasmic actin, are predominantly expressed in nonmuscle cells, controlling cell structure and motility (1). α-cardiac and α-skeletal actin are expressed in striated cardiac and skeletal muscles, respectively; two smooth muscle actins, α- and γ-actin, are found primarily in vascular smooth muscle and enteric smooth muscle, respectively. These actin isoforms regulate the contractile potential of muscle cells (1). Actin exists mainly as a fibrous polymer, F-actin. In response to cytoskeletal reorganizing signals during processes such as cytokinesis, endocytosis, or stress, cofilin promotes fragmentation and depolymerization of F-actin, resulting in an increase in the monomeric globular form, G-actin (2). The ARP2/3 complex stabilizes F-actin fragments and promotes formation of new actin filaments (2). Research studies have shown that actin is hyperphosphorylated in primary breast tumors (3). Cleavage of actin under apoptotic conditions has been observed in vitro and in cardiac and skeletal muscle, as shown in research studies (4-6). Actin cleavage by caspase-3 may accelerate ubiquitin/proteasome-dependent muscle proteolysis (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rho family small GTPases, including Rho, Rac and cdc42, act as molecular switches, regulating processes such as cell migration, adhesion, proliferation and differentiation. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of bound GDP for GTP, and inhibited by GTPase activating proteins (GAPs), which catalyze the hydrolysis of GTP to GDP. A third level of regulation is provided by the stoichiometric binding of Rho GDP dissociation inhibitor (RhoGDI) (1). RhoA, RhoB and RhoC are highly homologous, but appear to have divergent biological functions. Carboxy-terminal modifications and differences in subcellular localization allow these three proteins to respond to and act on distinct signaling molecules (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Caldesmon-1 is an actin filament stabilizing protein involved in the regulation of cell contraction. Binding of caldesmon-1 to actin is weakened by phosphorylation and by calmodulin in the presence of calcium. Caldesmon-1 is encoded by a single gene, which is spliced to generate a widely distributed low molecular weight form and a smooth muscle specific high molecular weight form (1,2). Caldesmon-1 is phosphorylated by the cyclin dependent kinase cdc2 and Erk1/2 MAP kinase, both of which prevent the activity of caldesmon-1 (3-5). Phosphorylation of caldesmon-1 by cdc2 is required for passage of cells through mitosis (6). Phosphorylation by Erk1/2 is important in regulating smooth muscle contraction (7). Caldesmon-1 activity may play a role in the formation of podosomes, adhesion complexes associated with the secretion of matrix metalloproteases, invasion, and metastasis (reviewed in 5).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Caldesmon-1 is an actin filament stabilizing protein involved in the regulation of cell contraction. Binding of caldesmon-1 to actin is weakened by phosphorylation and by calmodulin in the presence of calcium. Caldesmon-1 is encoded by a single gene, which is spliced to generate a widely distributed low molecular weight form and a smooth muscle specific high molecular weight form (1,2). Caldesmon-1 is phosphorylated by the cyclin dependent kinase cdc2 and Erk1/2 MAP kinase, both of which prevent the activity of caldesmon-1 (3-5). Phosphorylation of caldesmon-1 by cdc2 is required for passage of cells through mitosis (6). Phosphorylation by Erk1/2 is important in regulating smooth muscle contraction (7). Caldesmon-1 activity may play a role in the formation of podosomes, adhesion complexes associated with the secretion of matrix metalloproteases, invasion, and metastasis (reviewed in 5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: RalA and RalB are members of the Ras family of small GTPases and are highly homologous in protein sequence. The functions of RalA and RalB are distinct yet overlapping. By binding to various effector proteins, RalA and RalB serve as important GTP sensors for exocytosis and membrane trafficking (1-3). RalA is required for Ras-related tumorigenesis (4) and RalB is important for tumor survival (5). In addition to tumor formation, Ral proteins also play a role in cancer cell migration and metastatic tumor invasion (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: RalA and RalB are members of the Ras family of small GTPases and are highly homologous in protein sequence. The functions of RalA and RalB are distinct yet overlapping. By binding to various effector proteins, RalA and RalB serve as important GTP sensors for exocytosis and membrane trafficking (1-3). RalA is required for Ras-related tumorigenesis (4) and RalB is important for tumor survival (5). In addition to tumor formation, Ral proteins also play a role in cancer cell migration and metastatic tumor invasion (6,7).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Rab11a, Rab11b and Rab25 are members of the Rab11 family of small Ras-like GTPases. Rab11 (isoforms Rab11a and Rab11b) functions as a key regulator in the recycling of perinuclear, plasma membrane and Golgi compartment endosomes (1,2). Despite some overlap, distinct differences exist between Rab11a and Rab11b in both their cellular distribution and functional roles. Rab11a is ubiquitously expressed while Rab11b is found mainly in the heart and brain (3,4). Like other Rab proteins, Rab11 exerts its function via interactions with Rab11 family interacting proteins (FIPs). While there are three distinct classes of FIPs, all appear to share a conserved carboxy-terminal Rab-binding domain that allows Rab-FIP protein interaction. When bound together, these proteins are thought to regulate membrane-associated protein sorting (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rab11a, Rab11b and Rab25 are members of the Rab11 family of small Ras-like GTPases. Rab11 (isoforms Rab11a and Rab11b) functions as a key regulator in the recycling of perinuclear, plasma membrane and Golgi compartment endosomes (1,2). Despite some overlap, distinct differences exist between Rab11a and Rab11b in both their cellular distribution and functional roles. Rab11a is ubiquitously expressed while Rab11b is found mainly in the heart and brain (3,4). Like other Rab proteins, Rab11 exerts its function via interactions with Rab11 family interacting proteins (FIPs). While there are three distinct classes of FIPs, all appear to share a conserved carboxy-terminal Rab-binding domain that allows Rab-FIP protein interaction. When bound together, these proteins are thought to regulate membrane-associated protein sorting (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Gelsolin (actin-depolymerizing factor, ADF, AGEL, Brevin) is an 83 kDa protein that shares structural and functional homology to villin and adseverin/scinderin (1,2). Gelsolin plays an important role in actin filament assembly by capping and severing actin proteins in a Ca2+-dependent manner (3,4). Gelsolin is important for cellular events (e.g., membrane ruffling, chemotaxis, ciliogenesis) that require cytoskeletal remodeling (3). Accordingly, cells from gelsolin knockout mice exhibit motility defects, including a failure to ruffle in response to growth factor stimulation (5,6). In humans, defects in gelsolin have been linked to amyloidosis type 5 (AMYL5), a hereditary disease characterized by cranial neuropathy, which appears to result from gelsolin amyloid deposition (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rab6 is a member of the Ras superfamily of small Rab GTPases implicated in endocytosis (1). The three distinct members of the Rab6 subfamily (Rab6A, Rab6A', and Rab6B) are structurally similar but likely exhibit non-overlapping functions (2,3). Rab6 localized to the Golgi (4) regulates retrograde transport of membrane-bound target proteins from the Golgi apparatus to the endoplasmic reticulum (5-7) or from the Golgi to the endosome during exocytotic transport (8). Rab6 interacts with microtubule motor proteins such as rabkinesin-6 (KIF20A) and dynein/dynactin complexes; Rab6-mediated transport requires a functionally intact microtubule system (9,10). Rab6 also regulates cytokinesis and cell cycle check point through interactions with Rab6 effector proteins, including the dynein/dynactin protein DCTN1 and the GTPase activating protein RABGAP1 (11,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Rab11a, Rab11b and Rab25 are members of the Rab11 family of small Ras-like GTPases. Rab11 (isoforms Rab11a and Rab11b) functions as a key regulator in the recycling of perinuclear, plasma membrane and Golgi compartment endosomes (1,2). Despite some overlap, distinct differences exist between Rab11a and Rab11b in both their cellular distribution and functional roles. Rab11a is ubiquitously expressed while Rab11b is found mainly in the heart and brain (3,4). Like other Rab proteins, Rab11 exerts its function via interactions with Rab11 family interacting proteins (FIPs). While there are three distinct classes of FIPs, all appear to share a conserved carboxy-terminal Rab-binding domain that allows Rab-FIP protein interaction. When bound together, these proteins are thought to regulate membrane-associated protein sorting (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Rab10 is a member of the Ras superfamily of small Rab GTPases (1) that interacts with Mss4, myosin V (Va, Vb and Vc) and GDI as it helps mediate sorting among cellular endosomes (2-4). Mutation analysis and GFP-fusion protein expression of Rab10 in MDCK cells determined that Rab10 plays a regulatory role in membrane protein transport between early endosomes and basolateral compartments (5,6). Rab10 associates with the GLUT4 complex as a target for AS160 and is required for insulin-stimulated GLUT4 translocation in adipocytes (7,8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The Rab8 GTPase is a member of the Ras superfamily that functions in protein transport and membrane restructuring (1). Studies show that Rab8 is localized to the trans Golgi network (TGN), basolateral membrane, and vesicular structures where it helps regulate target protein transport between TGN and the basolateral membrane (1-3). Overexpression studies and mutation analysis of Rab8 and its associated Rab8GEF indicate additional roles in actin and microtubule remodeling during polarized membrane transport and membrane protrusion formation (4-6). Rab8 associates with myosin Vb and is required for translocation of GLUT4 following insulin stimulation in muscle (7,8). Control of target protein vesicle transport by Rab8 also regulates MT1-MMP activity during extracellular matrix formation and JRAB/MICAL-L2 at tight junction formation (9,10).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Rab10 is a member of the Ras superfamily of small Rab GTPases (1) that interacts with Mss4, myosin V (Va, Vb and Vc) and GDI as it helps mediate sorting among cellular endosomes (2-4). Mutation analysis and GFP-fusion protein expression of Rab10 in MDCK cells determined that Rab10 plays a regulatory role in membrane protein transport between early endosomes and basolateral compartments (5,6). Rab10 associates with the GLUT4 complex as a target for AS160 and is required for insulin-stimulated GLUT4 translocation in adipocytes (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: FUS/TLS (fused in sarcoma/translocated in liposarcoma) was initially identified by investigators as a component of fusion proteins found in a variety of cancers such as myxoid liposarcoma, acute myeloid leukemia, and Ewing’s tumor (1). FUS/TLS fusion with the DNA binding domain of transcription activators such as CHOP and ERG leads to aberrant transcription of target genes that is thought by researchers to lead to tumor development (1-5). FUS/TLS is involved in a wide range of RNA processing events such as pre-mRNA splicing, mRNA transcription, and miRNA processing (1,6). In addition to its role in RNA metabolism, FUS/TLS maintains genomic stability and co-regulates gene expression by interacting with various transcription factors such as nuclear receptors, YB-1, p65 subunit of NF-κB, TFIID, and RUNX2 (1,6,7). More recently, researchers have found several mutations of FUS/TLS in ALS (amyotrophic lateral sclerosis) and FTLD (frontotemporal lobar degeneration) patients that causes cytoplasmic mislocalization of FUS/TLS (6,8-11).