20% off purchase of 3 or more products* | Learn More >>

Monkey Nadh Metabolic Process

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: α-ketoglutarate dehydrogenase complex is a rate-regulating enzyme in the Krebs Cycle (1). Dihydrolipoamide succinyltransferase (DLST) is a key subunit in this complex (2). Reduction of DLST increases reactive oxygen species production, suggesting its role in oxidative stress (2). Research has shown that deficiency of DLST in mice is linked to increased oxidative stress in mitochondria, a process that may be involved in the pathogenesis of Alzheimer's disease (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Valosin-containing protein (VCP) is a highly conserved and abundant 97 kDa protein that belongs to the AAA (ATPase associated with a variety of cellular activities) family of proteins. VCP assembles as a homo-hexamer, forming a ring with a channel at its center (1,2,3). VCP homo-hexamers associate with a variety of protein cofactors to form many distinct protein complexes, which act as chaperones to unfold proteins and transport them to specific cellular compartments or to the proteosome (4). These protein complexes participate in many cellular functions, including vesicle transport and fusion, fragmentation and reassembly of the golgi stacks during mitosis, nuclear envelope formation and spindle disassembly following mitosis, cell cycle regulation, DNA damage repair, apoptosis, B- and T-cell activation, NF-κB-mediated transcriptional regulation, endoplasmic reticulum (ER)-associated degradation and protein degradation (4). VCP appears to localize mainly to the endoplasmic reticulum; however, tyrosine phosphorylation is associated with relocalization to the centrosome during mitosis (5). In addition, following cellular exposure to ionizing radition, VCP is phosphorylated at Ser784 in an ATM-dependent manner and accumulates in the nucleus at sites of double-stranded DNA breaks (DSBs) (6). Exposure to other types of DNA damaging agents such as UV light, bleomycin or doxorubicin results in phosphorylation of VCP by ATR and DNA-PK in an ATM-independent manner (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: α-ketoglutarate dehydrogenase complex is a rate-regulating enzyme in the Krebs Cycle (1). Dihydrolipoamide succinyltransferase (DLST) is a key subunit in this complex (2). Reduction of DLST increases reactive oxygen species production, suggesting its role in oxidative stress (2). Research has shown that deficiency of DLST in mice is linked to increased oxidative stress in mitochondria, a process that may be involved in the pathogenesis of Alzheimer's disease (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Malate dehydrogenase (MDH) is a key enzyme in the tricarboxylic acid cycle and malate/aspartate shuttle (1,2). MDH is widely expressed in organisms from most bacteria to all eukaryotes (2). The cytoplasmic MDH isoenzyme (cMDH or MDH1) primarily reduces oxaloacetate to malate in the malate/aspartate shuttle (1-3). The major function of the mitochondrial MDH isoenzyme (mMDH or MDH2) is to oxidize malate to oxaloacetate in the tricarboxylic acid cycle (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: 2-oxoglutarate dehydrogenase (OGDH) is one of three enzymes in the α ketoglutarate dehydrogenase complex (OGDC) that is responsible for catalyzing a rate-regulating step of the tricarboxylic acid (Krebs) cycle. Together with dihydrolipoamide S-succinyltransferase (DLST) and dihydrolipoamide dehydrogenase (DLD), OGDH helps to convert 2-oxoglutarate to succinyl-CoA and CO2 within eukaryotic mitochondria (1). Regulation of this enzyme complex is important for mitochondrial energy metabolism within cells (2). Research studies indicate that OGDH activity within the mitochondrial matrix is regulated by multiple factors, including calcium, the adenine nucleotides ATP and ADP, and NADH (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Valosin-containing protein (VCP) is a highly conserved and abundant 97 kDa protein that belongs to the AAA (ATPase associated with a variety of cellular activities) family of proteins. VCP assembles as a homo-hexamer, forming a ring with a channel at its center (1,2,3). VCP homo-hexamers associate with a variety of protein cofactors to form many distinct protein complexes, which act as chaperones to unfold proteins and transport them to specific cellular compartments or to the proteosome (4). These protein complexes participate in many cellular functions, including vesicle transport and fusion, fragmentation and reassembly of the golgi stacks during mitosis, nuclear envelope formation and spindle disassembly following mitosis, cell cycle regulation, DNA damage repair, apoptosis, B- and T-cell activation, NF-κB-mediated transcriptional regulation, endoplasmic reticulum (ER)-associated degradation and protein degradation (4). VCP appears to localize mainly to the endoplasmic reticulum; however, tyrosine phosphorylation is associated with relocalization to the centrosome during mitosis (5). In addition, following cellular exposure to ionizing radition, VCP is phosphorylated at Ser784 in an ATM-dependent manner and accumulates in the nucleus at sites of double-stranded DNA breaks (DSBs) (6). Exposure to other types of DNA damaging agents such as UV light, bleomycin or doxorubicin results in phosphorylation of VCP by ATR and DNA-PK in an ATM-independent manner (6).