Microsize antibodies for $99 | Learn More >>

Monkey Regulation of Vascular Permeability

Also showing Monkey Positive Regulation of Vascular Permeability

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Hamster, Human, Monkey, Mouse, Pig, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Src (36D10) Rabbit mAb #2109.
APPLICATIONS
REACTIVITY
Bovine, Hamster, Human, Monkey, Mouse, Pig, Rat

Application Methods: Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Src (32G6) Rabbit mAb #2123.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: TRPV4 is a member of the transient receptor potential vanilloid (TRPV) family of ion channels, and functions as a Ca2+-permeant non-selective cation channel. TRPV4 channels are expressed in many cell types, with particular abundance in sensory and spinal neurons (1). TRPV4 channels play a role in maintaining cellular homeostasis, by facilitating transmembrane Ca2+ transport in response to various stimuli, including thermal stress, fatty acid metabolites, and hypotonicity (2). Mutations in the TRPV4 gene have consequently been attributed to a variety of pathological conditions. For example, constitutively active TRPV4 mutants can lead to excess Ca2+ influx, resulting in toxicity and degeneration of peripheral nerves (3). TRPV4-dependent Ca2+ influx was also shown to mediate strain-induced and TGFβ1-induced epithelial-mesenchymal transition (EMT), suggesting a mechanistic role for TRPV4-mediated Ca2+ transport in fibrosis and oncogenesis (4). Consistent with this, studies in capillary endothelial cells showed that mechanical strain-induced Ca2+ influx through TRPV4 promote focal adhesion and stress fiber remodeling, mediated specifically through integrins, PI3K, and downstream kinases including Rho and ROCK (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The cellular oncogene c-Yes and its viral homologue v-Yes (the transforming gene of Yamaguchi 73 and Esh avian sarcoma viruses) encode a 60 kDa, cytoplasmic, membrane-associated, protein-tyrosine kinase (1). Yes belongs to the Src kinase family and is ubiquitously expressed in many tissues and cells. Like other Src family members, Yes contains several conserved functional domains such as an N-terminal myristoylation sequence for membrane targeting, SH2 and SH3 domains, a kinase domain, and a C-terminal non-catalytic domain (2). Although several lines of evidence support redundancy in signaling between Yes and other Src family kinases, there is also a growing body of evidence indicating specificity in Yes signaling (2). Yes is activated downstream of a multitude of cell surface receptors, including receptor tyrosine kinases, G protein-coupled receptors, and cytokine receptors (3). In addition, both Yes and Src kinases are activated during the cell cycle transition from G2 to M phase (3). Investigators have found that dysfunction of Yes is associated with the development of various cancers (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Rho family GTPases are key regulators of diverse processes such as cytoskeletal organization, cell growth and differentiation, transcriptional regulation, and cell adhesion/motility. The activities of these proteins are controlled primarily through guanine nucleotide exchange factors (GEFs) that facilitate the exchange of GDP for GTP, promoting the active (GTP-bound) state, and GTPase activating proteins (GAPs) that promote GTP hydrolysis and the inactive (GDP-bound) state (1,2).The p190 RhoGAP proteins are widely expressed Rho family GAPs. p190-A has been characterized as a tumor suppressor, and research studies have shown that loss or rearrangement of the chromosomal region containing the gene for p190-A is linked to tumor development (3,4). p190-A binds the mitogen-inducible transcription factor TFII-I, sequestering it in the cytoplasm and inhibiting its activity. Phosphorylation of p190-A at Tyr308 reduces its affinity for TFII-I, relieving the inhibition (5). p190-A can also inhibit growth factor-induced gliomas in mice (6) and affect cleavage furrow formation and cytokinesis in cultured cells (7).Mice lacking p190-B RhoGAP show excessive Rho activation and a reduction in activation of the transcription factor CREB (8). Cells deficient in p190-B display defective adipogenesis (9). There is increasing evidence that p190 undergoes tyrosine phosphorylation, which activates its GAP domain (9-11). Levels of tyrosine phosphorylation are enhanced by Src overexpression (10,11). IGF-I treatment downregulates Rho through phosphorylation and activation of p190-B RhoGAP, thereby enhancing IGF signaling implicated in adipogenesis (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Rho family GTPases are key regulators of diverse processes such as cytoskeletal organization, cell growth and differentiation, transcriptional regulation, and cell adhesion/motility. The activities of these proteins are controlled primarily through guanine nucleotide exchange factors (GEFs) that facilitate the exchange of GDP for GTP, promoting the active (GTP-bound) state, and GTPase activating proteins (GAPs) that promote GTP hydrolysis and the inactive (GDP-bound) state (1,2).The p190 RhoGAP proteins are widely expressed Rho family GAPs. p190-A has been characterized as a tumor suppressor, and research studies have shown that loss or rearrangement of the chromosomal region containing the gene for p190-A is linked to tumor development (3,4). p190-A binds the mitogen-inducible transcription factor TFII-I, sequestering it in the cytoplasm and inhibiting its activity. Phosphorylation of p190-A at Tyr308 reduces its affinity for TFII-I, relieving the inhibition (5). p190-A can also inhibit growth factor-induced gliomas in mice (6) and affect cleavage furrow formation and cytokinesis in cultured cells (7).Mice lacking p190-B RhoGAP show excessive Rho activation and a reduction in activation of the transcription factor CREB (8). Cells deficient in p190-B display defective adipogenesis (9). There is increasing evidence that p190 undergoes tyrosine phosphorylation, which activates its GAP domain (9-11). Levels of tyrosine phosphorylation are enhanced by Src overexpression (10,11). IGF-I treatment downregulates Rho through phosphorylation and activation of p190-B RhoGAP, thereby enhancing IGF signaling implicated in adipogenesis (9).