Microsize antibodies for $99 | Learn More >>

Monkey Regulation of Virion Penetration into Host Cell

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: TRIM25, also termed Estrogen-responsive Finger Protein (EFP), is a member of the tripartite motif-containing (TRIM) family of proteins, characterized by the presence of a RING domain, one or two B-box motifs, and a coiled-coil region (1). TRIM25 was first identified in a search for estrogen-responsive genes (2), and studies have subsequently shown TRIM25 to be overexpressed in many breast cancer tumors (3). A potentially oncogenic role for TRIM25 was suggested by studies showing that suppression of TRIM25 expression inhibited growth of MCF7 cells in vitro and in mouse xenograft models (4). Functional studies largely suggest that TRIM25 functions as a ubiquitin E3 or ISG15 E3 ligase. For example, TRIM25 was shown to induce K63-linked ubiquitination of Rig-I, resulting in Rig-I-mediated activation of downstream signaling cascades that drive the host antiviral innate immune response (5). Notably, it was reported that the influenza A virus non-structural protein 1 inhibits TRIM25-mediated ubiquitination of Rig-I, which may have evolved as a mechanism to evade the host innate immune response (6).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Nectin-2, also known as CD112 and poliovirus receptor-related 2 (PVRL2), is a single-pass type I membrane glycoprotein ubiquitously expressed on various human tissues (1). It is a calcium independent cell adhesion molecule known to interact with several cell surface receptors, including DNAM-1 (CD226), LFA-1 (CD11a), Nectin-3 (CD113), TIGIT (VSTM3), and PVRIG (CD112R) (2-7). It is one of the major constituents of adherins junctions, and therefore plays a central role in a number of cellular processes, including adhesion, migration, and proliferation (2-8). Within the immune system, Nectin-2 modulates immune cell signaling. Upon interaction with DNAM-1 expressed on T and NK cells, Nectin-2 stimulates proliferation and cytokine production (4). Upon interaction with PVRIG, Nectin-2 inhibits proliferation (7). Thus, Nectin-2 can be either a co-stimulator or a co-inhibitor of immune cell function depending on competitive receptor interactions. Nectin-2 also serves as an entry for certain mutant strains of herpes simplex virus and pseudorabies virus, and it is involved in cell to cell spreading of these viruses (8,9). Alternate transcriptional splice variants, encoding different isoforms, have been characterized (10,11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Gelsolin (actin-depolymerizing factor, ADF, AGEL, Brevin) is an 83 kDa protein that shares structural and functional homology to villin and adseverin/scinderin (1,2). Gelsolin plays an important role in actin filament assembly by capping and severing actin proteins in a Ca2+-dependent manner (3,4). Gelsolin is important for cellular events (e.g., membrane ruffling, chemotaxis, ciliogenesis) that require cytoskeletal remodeling (3). Accordingly, cells from gelsolin knockout mice exhibit motility defects, including a failure to ruffle in response to growth factor stimulation (5,6). In humans, defects in gelsolin have been linked to amyloidosis type 5 (AMYL5), a hereditary disease characterized by cranial neuropathy, which appears to result from gelsolin amyloid deposition (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: During their synthesis, secretory proteins translocate into the endoplasmic reticulum (ER) where they are post-translationally modified and properly folded. To reach their native conformation, many secretory proteins require the formation of intra- or inter-molecular disulfide bonds (1). This process is called oxidative protein folding. Protein disulfide isomerase (PDI) catalyzes the formation and isomerization of these disulfide bonds (2). Studies on mechanisms of oxidative folding suggest that molecular oxygen oxidizes the ER-protein Ero1, which in turn oxidizes PDI through disulfide exchange (3). This event is then followed by PDI-catalyzed disulfide bond formation in folding proteins (3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: During their synthesis, secretory proteins translocate into the endoplasmic reticulum (ER) where they are post-translationally modified and properly folded. To reach their native conformation, many secretory proteins require the formation of intra- or inter-molecular disulfide bonds (1). This process is called oxidative protein folding. Protein disulfide isomerase (PDI) catalyzes the formation and isomerization of these disulfide bonds (2). Studies on mechanisms of oxidative folding suggest that molecular oxygen oxidizes the ER-protein Ero1, which in turn oxidizes PDI through disulfide exchange (3). This event is then followed by PDI-catalyzed disulfide bond formation in folding proteins (3).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated PDI (C81H6) Rabbit mAb #3501.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: During their synthesis, secretory proteins translocate into the endoplasmic reticulum (ER) where they are post-translationally modified and properly folded. To reach their native conformation, many secretory proteins require the formation of intra- or inter-molecular disulfide bonds (1). This process is called oxidative protein folding. Protein disulfide isomerase (PDI) catalyzes the formation and isomerization of these disulfide bonds (2). Studies on mechanisms of oxidative folding suggest that molecular oxygen oxidizes the ER-protein Ero1, which in turn oxidizes PDI through disulfide exchange (3). This event is then followed by PDI-catalyzed disulfide bond formation in folding proteins (3).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for direct immunofluorescent analysis in mouse cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated PDI (C81H6) Rabbit mAb #3501.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: During their synthesis, secretory proteins translocate into the endoplasmic reticulum (ER) where they are post-translationally modified and properly folded. To reach their native conformation, many secretory proteins require the formation of intra- or inter-molecular disulfide bonds (1). This process is called oxidative protein folding. Protein disulfide isomerase (PDI) catalyzes the formation and isomerization of these disulfide bonds (2). Studies on mechanisms of oxidative folding suggest that molecular oxygen oxidizes the ER-protein Ero1, which in turn oxidizes PDI through disulfide exchange (3). This event is then followed by PDI-catalyzed disulfide bond formation in folding proteins (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: TRIM5α is a retroviral restriction factor that was originally identified as an HIV restriction factor in Old World monkeys (1). The restriction specificity of TRIM5α varies between species (2). Human TRIM5α only weakly restricts HIV, but efficiently restricts N-tropic murine leukemia virus (N-MLV) (1-3). TRIM5α is composed of a tripartite motif containing RING, B-box 2, and coiled-coil domains, and a B30.2/SPRY domain (4). A 13 amino acid stretch of the B30.2/SPRY domain containing multiple positively charged residues was found to be essential for viral restriction and responsible for variations across species in restriction specificity (4,5). TRIM5α blocks viral infection by interacting with the incoming viral capsid and promoting its premature disassembly (1,6,7). In addition, TRIM5α, together with UBC13-UEV1A, promotes innate immune signaling by catalyzing the synthesis of K63-linked ubiquitin chains that activate TAK1, AP-1, and NF-κB (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Galectins are a family of β-galactose binding proteins that are characterized by their affinity for poly-N-acetyllactosamine-enriched glycoconjugates and their carbohydrate-binding site (1,2). Members of the galectin family have been implicated in a variety of biological functions including cell adhesion (3), growth regulation (4), cytokine production (5), T cell apoptosis (6), and immune responses (7). Galectin-1/LGALS1 has been shown to be expressed in a wide range of tissues and cell types. The level and pattern of expression of galectin-1 have been shown to change during development (8). In addition to a role in developmental processes, galectin-1 has been shown to be involved in central immune tolerance and may function in tumorigenesis by modulating the immune response to the tumor (9,10). Research studies have shown that galectin-1 expression is increased in several human cancers, suggesting a correlation with metastatic potential (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Mre11, originally described in genetic screens from the yeast Saccharomyces cerevisiae in which mutants were defective in meiotic recombination (1), is a central part of a multisubunit nuclease composed of Mre11, Rad50 and Nbs1 (MRN) (2,3). The MRN complex plays a critical role in sensing, processing and repairing DNA double strand breaks. Defects lead to genomic instability, telomere shortening, aberrant meiosis and hypersensitivity to DNA damage (4). Hypomorphic mutations of Mre11 are found in ataxia-telangiectasia-like disease (ATLD), with phenotypes similar to mutations in ATM that cause ataxia-telangiectasia (A-T), including a predisposition to malignancy in humans (5). Cellular consequences of ATLD include chromosomal instability and defects in the intra-S phase and G2/M checkpoints in response to DNA damage. The MRN complex may directly activate the ATM checkpoint kinase at DNA breaks (6).