Microsize antibodies for $99 | Learn More >>

Monkey Response to Methylglyoxal

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Western Blotting

Background: SIN3 was originally identified as a negative regulator of transcription in budding yeast (1,2). Since then, three isoforms of the SIN3 proteins have been identified in mammalian cells, as products of two different genes, SIN3A and SIN3B (3,4). Both SIN3A and SIN3B are nuclear proteins that function as scaffolding subunits for the multi-subunit SIN3 transcriptional repressor complex, containing SIN3A or SIN3B, HDAC1, HDAC2, SDS3, RBBP4/RBAP48, RBBP7/RBAP46, SAP30, and SAP18 (3,4). SIN3 proteins contain four paired amphipathic alpha-helix (PAH) motifs that function in the recruitment of the SIN3 complex to target genes by binding a multitude of DNA-binding transcriptional repressor proteins, including Mad1, p53, E2F4, HCF-1, AML1, Elk-1, NRSF, CTCF, ERα, and MeCP2 (3,4). In addition, SIN3 proteins contain an HDAC interaction domain (HID), which mediates binding of HDAC1 and HDAC2 via the SDS3 bridging protein, and a highly conserved region (HCR) at the carboxy terminus, which contributes to repressor protein binding (3,4). RBBP4 and RBBP7 proteins also bind to SDS3 and contribute to nucleosome binding of the complex. The SIN3 complex functions to repress transcription, in part, by deacetylating histones at target gene promoters (3,4). In addition, recent studies have shown that SIN3 is recruited to the coding regions of repressed and active genes, where it deacetylates histones and suppresses spurious transcription by RNA polymerase II (3,5). In addition to histone deacetylase activity, the SIN3 complex associates with histone methyltransferase (ESET), histone demethylase (JARID1A/RBP2), ATP-dependent chromatin remodeling (SWI/SNF), methylcytosine dioxygenase (TET1), and O-GlcNAc transferase (OGT) activities, all of which appear to contribute to the regulation of target genes (5-9). The SIN3 complex is critical for proper regulation of embryonic development, cell growth and proliferation, apoptosis, DNA replication, DNA repair, and DNA methylation (imprinting and X-chromosome inactivation) (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: SIN3 was originally identified as a negative regulator of transcription in budding yeast (1,2). Since then, three isoforms of the SIN3 proteins have been identified in mammalian cells, as products of two different genes, SIN3A and SIN3B (3,4). Both SIN3A and SIN3B are nuclear proteins that function as scaffolding subunits for the multi-subunit SIN3 transcriptional repressor complex, containing SIN3A or SIN3B, HDAC1, HDAC2, SDS3, RBBP4/RBAP48, RBBP7/RBAP46, SAP30, and SAP18 (3,4). SIN3 proteins contain four paired amphipathic alpha-helix (PAH) motifs that function in the recruitment of the SIN3 complex to target genes by binding a multitude of DNA-binding transcriptional repressor proteins, including Mad1, p53, E2F4, HCF-1, AML1, Elk-1, NRSF, CTCF, ERα, and MeCP2 (3,4). In addition, SIN3 proteins contain an HDAC interaction domain (HID), which mediates binding of HDAC1 and HDAC2 via the SDS3 bridging protein, and a highly conserved region (HCR) at the carboxy terminus, which contributes to repressor protein binding (3,4). RBBP4 and RBBP7 proteins also bind to SDS3 and contribute to nucleosome binding of the complex. The SIN3 complex functions to repress transcription, in part, by deacetylating histones at target gene promoters (3,4). In addition, recent studies have shown that SIN3 is recruited to the coding regions of repressed and active genes, where it deacetylates histones and suppresses spurious transcription by RNA polymerase II (3,5). In addition to histone deacetylase activity, the SIN3 complex associates with histone methyltransferase (ESET), histone demethylase (JARID1A/RBP2), ATP-dependent chromatin remodeling (SWI/SNF), methylcytosine dioxygenase (TET1), and O-GlcNAc transferase (OGT) activities, all of which appear to contribute to the regulation of target genes (5-9). The SIN3 complex is critical for proper regulation of embryonic development, cell growth and proliferation, apoptosis, DNA replication, DNA repair, and DNA methylation (imprinting and X-chromosome inactivation) (3,4).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Parkinson's disease (PD) is characterized by the presence of Lewy bodies (intracellular inclusions) and by the loss of dopaminergic neurons. Research studies have shown that mutations in α-synuclein, Parkin, and DJ-1 are linked to PD (1). α-synuclein is a major component of the aggregates found in Lewy bodies. Parkin is involved in protein degradation through the ubiquitin-proteasome pathway, and investigators have shown that mutations in Parkin cause early onset of PD (1). Loss-of-function mutations in DJ-1 cause early onset of PD, but DJ-1 is associated with multiple functions: it cooperates with Ras to increase cell transformation, it positively regulates transcription of the androgen receptor, and it may function as an indicator of oxidative stress (2-5). Dopamine D2 receptor-mediated functions are greatly impaired in DJ-1 (-/-) mice, resulting in reduced long-term depression (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Glucose-6-phosphate isomerase (GPI) is a multi-functional protein belonging to the glucose phosphate isomerase family (1,2). As an intracellular metabolic enzyme, GPI plays a pivotal role in glycolysis and gluconeogenesis by catalyzing the interconversion of D-glucose-6-phosphate and D-fructose-6-phosphate (3). GPI is also secreted, where it functions as a cytokine (referred to as Autocrine Motility Factor, AMF), acting via the E3-ubiquitin-protein ligase AMFR/gp78 (4). In normal tissues, GPI/AMF has been shown to promote both immune cell maturation and neuronal cell survival (5,6). It is also secreted in abundance by some tumor cells (7), where it has been shown to promote tumor cell migration and metastasis (8,9).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated DJ-1 (D29E5) XP® Rabbit mAb #5933.
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Parkinson's disease (PD) is characterized by the presence of Lewy bodies (intracellular inclusions) and by the loss of dopaminergic neurons. Research studies have shown that mutations in α-synuclein, Parkin, and DJ-1 are linked to PD (1). α-synuclein is a major component of the aggregates found in Lewy bodies. Parkin is involved in protein degradation through the ubiquitin-proteasome pathway, and investigators have shown that mutations in Parkin cause early onset of PD (1). Loss-of-function mutations in DJ-1 cause early onset of PD, but DJ-1 is associated with multiple functions: it cooperates with Ras to increase cell transformation, it positively regulates transcription of the androgen receptor, and it may function as an indicator of oxidative stress (2-5). Dopamine D2 receptor-mediated functions are greatly impaired in DJ-1 (-/-) mice, resulting in reduced long-term depression (6).