Microsize antibodies for $99 | Learn More >>

Monkey Retinoic Acid Binding

Also showing Monkey Retinoic Acid Receptor Activity, Monkey Retinoic Acid Receptor Binding

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: Retinoids (vitamin A and its active retinoic acid derivatives) are non-steroid hormones that regulate cell proliferation, differentiation and apoptosis. Retinoic acid receptors (RARalpha, -beta and -gamma) and retinoid X receptors (RXRalpha, -beta and -gamma) are nuclear receptors that function as RAR-RXR heterodimers or RXR homodimers (1-2). In response to retinoid binding, these dimers control gene expression by binding to specific retinoic acid response elements, by recruiting cofactors and the transcriptional machinery, and by indirectly regulating chromatin structure. Finally, ligand binding and phosphorylation of RARalpha by JNK at Thr181, Ser445 and Ser461 controls the stability of RAR-RXR through the ubiquitin-proteasome pathway (3-4). At least four distinct genetic lesions affect RARalpha and result in acute promyelocytic leukemia (APL). The t(15;17) translocation that results in the PML-RARalpha fusion protein is responsible for more than 99% of APL cases, and the fusion protein inhibits PML-dependent apoptotic pathways in a dominant negative fashion. In addition PML-RARalpha inhibits transcription of retinoic acid target genes by recruiting co-repressors, attenuating myeloid differentiation (5-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Additional sex combs-like protein 1 (ASXL1) is a polycomb-associated protein that interacts with polycomb repressive complex 2 (PRC2), which contains the histone methyltransferase EZH2 and functions to mono-, di-, and tri-methylate histone H3 on lysine 27. These histone marks are associated with transcriptional repression (1). In addition, ASXL1 interacts with BRCA1-associated protein 1 (BAP1), the catalytic subunit of the polycomb repressive deubiquitinase complex (PR-DUB), which functions to de-ubiquitinate histone H2A at lysine 119 and activate transcription (2). ASXL1 functions as a transcriptional regulator of adipogenesis, acting to repress peroxisome proliferator-activated receptor gamma (PPARG) adipocyte differentiation. ASXL1 also functions as a transcriptional regulator of hematopoiesis acting as an activator of retinoic acid receptor (RAR) mediated transcriptional activation (3,4). ASXL1 is mutated or deleted in 10 to 30 percent of all myeloid malignancies, with loss-of-function mutations associated with poor prognosis in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Hematopoietic-specific deletions of ASXL1 in mice result in progressive, multi-lineage cytopenias and dysplasias, leading to increased number of hematopoietic stem and progenitor cells (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The human retinoid X receptors (RXRs) are encoded by three distinct genes (RXRα, RXRβ, and RXRγ) and bind selectively and with high affinity to the vitamin A derivative, 9-cis-retinoic acid. RXRs are type-II nuclear hormone receptors that are largely localized to the nuclear compartment independent of ligand binding. Nuclear RXRs form heterodimers with nuclear hormone receptor subfamily 1 proteins, including thyroid hormone receptor, retinoic acid receptors, vitamin D receptor, peroxisome proliferator-activated receptors, liver X receptors, and farnesoid X receptor (1). Since RXRs heterodimerize with multiple nuclear hormone receptors, they play a central role in transcriptional control of numerous hormonal signaling pathways by binding to cis-acting response elements in the promoter/enhancer region of target genes (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The evolutionarily conserved CCR4-NOT (CNOT) complex regulates mRNA metabolism in eukaryotic cells (1). This regulation occurs at different levels of mRNA synthesis and degradation, including transcription initiation, elongation, deadenylation, and degradation (1). Multiple components, including CNOT1, CNOT2, CNOT3, CNOT4, CNOT6, CNOT6L, CNOT7, CNOT8, CNOT9, and CNOT10 have been identified in this complex (2). In addition, subunit composition of this complex has been shown to vary among different tissues (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The evolutionarily conserved CCR4-NOT (CNOT) complex regulates mRNA metabolism in eukaryotic cells (1). This regulation occurs at different levels of mRNA synthesis and degradation, including transcription initiation, elongation, deadenylation, and degradation (1). Multiple components, including CNOT1, CNOT2, CNOT3, CNOT4, CNOT6, CNOT6L, CNOT7, CNOT8, CNOT9, and CNOT10 have been identified in this complex (2). In addition, subunit composition of this complex has been shown to vary among different tissues (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CtBP2 (carboxy-terminal binding protein-2) and its homolog CtBP1 are transcriptional co-repressors originally identified as proteins that bind the carboxy-terminus of the human adenovirus E1A protein (1-3). CtBP proteins are thought to play important roles in regulating various developmental pathways because deletion of CtBP2 leads to embryonic lethality at E10.5 and is correlated with axial patterning defects (4). CtBP proteins regulate various oncogenic signaling pathways as promoters of epithelial-mesenchymal transition, apoptosis antagonists, and tumor suppressor genes repressors (1,5). The CtBP protein transcription co-repression activity results from interactions with numerous transcription factors and chromatin modulators, including the polycomb group proteins (1,6,7). Depending on the context, CtBP proteins interact with a short amino acid sequence motif (PXDLS) to mediate repression of target genes through both histone deacetylase-dependent and independent mechanisms (6,8,9). CtBP proteins display a high sequence homology to the bacterial D-isomer-specific 2-hydroxyacid dehydrogenase enzymes. Research studies indicate that nuclear NADH levels regulate CtBP transcription repression activities, as NADH binding is required for CtBP2 homodimerization and transcription co-repressor activity (6,9-11).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: HMGA1, formerly known as HMG-I/Y, belongs to a family of high mobility group proteins that contain an AT-hook DNA binding domain. HMGA proteins are considered architectural transcription factors; they do not have direct transcriptional activation capacity, but instead regulate gene expression by changing DNA conformation through binding to AT-rich regions in the DNA and/or direct interaction with other transcription factors (1,2). HMGA1 is highly expressed during embryogenesis and in embryonic stem cells, but not in fully differentiated adult tissues (2-4). Research studies have shown that HMGA1 is over-expressed in rapidly dividing neoplastic cells and a wide variety of aggressive cancers, including thyroid, colon, breast, pancreas, and prostate (2-4). Investigators have shown that forced expression of HMGA1 induces cellular transformation and an epithelial-to-mesenchymal transition (EMT), while inhibition of HMGA1 expression blocks anchorage-independent cell growth and proliferation of cancer cells, suggesting that HMGA1 contributes to carcinogenesis by inducing and maintaining a de-differentiated, highly proliferative cell state (5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: HMGA1, formerly known as HMG-I/Y, belongs to a family of high mobility group proteins that contain an AT-hook DNA binding domain. HMGA proteins are considered architectural transcription factors; they do not have direct transcriptional activation capacity, but instead regulate gene expression by changing DNA conformation through binding to AT-rich regions in the DNA and/or direct interaction with other transcription factors (1,2). HMGA1 is highly expressed during embryogenesis and in embryonic stem cells, but not in fully differentiated adult tissues (2-4). Research studies have shown that HMGA1 is over-expressed in rapidly dividing neoplastic cells and a wide variety of aggressive cancers, including thyroid, colon, breast, pancreas, and prostate (2-4). Investigators have shown that forced expression of HMGA1 induces cellular transformation and an epithelial-to-mesenchymal transition (EMT), while inhibition of HMGA1 expression blocks anchorage-independent cell growth and proliferation of cancer cells, suggesting that HMGA1 contributes to carcinogenesis by inducing and maintaining a de-differentiated, highly proliferative cell state (5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The mediator complex consists of about 25-30 proteins and is thought to facilitate transcription activation by acting as a molecular bridge between the RNA polymerase II (RNAPII) machinery and transcription factors (1). Mediator is recruited to target genes by transcription factors and plays an essential role in the recruitment and stabilization of the RNAPII transcription complex at promoters, as well as the activation of transcription post RNAPII recruitment (1-5). The mediator complex also plays an important role in creating ‘chromatin loops’ that occur as a result of interactions between the transcription factor bound at distal enhancers and RNAPII bound at the proximal promoter, and works to sustain proper chromatin architecture during active transcription (6-8).