Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Calcium-Dependent Phospholipid Binding

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Cytosolic phospholipase A2 (cPLA2) is a ubiquitously distributed enzyme that catalyzes the hydrolysis of the sn-2 acyl bond of glycerolipids to produce lysophospholipids and release arachidonic acid (1). cPLA2 has been implicated in diverse cellular responses such as mitogenesis, differentiation, inflammation and cytotoxicity (1). Calcium binding to the amino-terminal CalB domain of cPLA2 promotes the translocation of cPLA2 from cytosol to membrane, where cPLA2 cleaves arachidonic acid from natural membrane (2). Phosphorylation of cPLA2 by MAPK (p42/44 and p38) at Ser505 (3,4) and Ser727 (5) stimulates its catalytic activity.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Cytosolic phospholipase A2 (cPLA2) is a ubiquitously distributed enzyme that catalyzes the hydrolysis of the sn-2 acyl bond of glycerolipids to produce lysophospholipids and release arachidonic acid (1). cPLA2 has been implicated in diverse cellular responses such as mitogenesis, differentiation, inflammation and cytotoxicity (1). Calcium binding to the amino-terminal CalB domain of cPLA2 promotes the translocation of cPLA2 from cytosol to membrane, where cPLA2 cleaves arachidonic acid from natural membrane (2). Phosphorylation of cPLA2 by MAPK (p42/44 and p38) at Ser505 (3,4) and Ser727 (5) stimulates its catalytic activity.

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Cytosolic phospholipase A2 (cPLA2) is a ubiquitously distributed enzyme that catalyzes the hydrolysis of the sn-2 acyl bond of glycerolipids to produce lysophospholipids and release arachidonic acid (1). cPLA2 has been implicated in diverse cellular responses such as mitogenesis, differentiation, inflammation and cytotoxicity (1). Calcium binding to the amino-terminal CalB domain of cPLA2 promotes the translocation of cPLA2 from cytosol to membrane, where cPLA2 cleaves arachidonic acid from natural membrane (2). Phosphorylation of cPLA2 by MAPK (p42/44 and p38) at Ser505 (3,4) and Ser727 (5) stimulates its catalytic activity.

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The annexin superfamily consists of 13 calcium or calcium and phospholipid binding proteins with high biological and structural homology (1). Annexin-1 (ANXA1) is the first characterized member of the annexin family of proteins and is able to bind to cellular membranes in a calcium-dependent manner, promoting membrane fusion and endocytosis (2-4). Annexin A1 has anti-inflammatory properties and inhibits phospholipase A2 activity (5,6). Annexin A1 can accumulate on internalized vesicles after EGF-stimulated endocytosis and may be required for a late stage in inward vesiculation (7). Phosphorylation by PKC, EGFR, and Chak1 results in inhibition of annexin A1 function (8-10). Annexin A1 has also been identified as one of the 'eat-me' signals on apoptotic cells that are to be recognized and ingested by phagocytes (11). Annexin A1, as an endogenous anti-inflammatory mediator, has roles in many diverse cellular functions, such as membrane aggregation, inflammation, phagocytosis, proliferation, apoptosis, and tumorigenesis and cancer development (12-14).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Annexin A1 (D5V2T) XP® Rabbit mAb #32934.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: The annexin superfamily consists of 13 calcium or calcium and phospholipid binding proteins with high biological and structural homology (1). Annexin-1 (ANXA1) is the first characterized member of the annexin family of proteins and is able to bind to cellular membranes in a calcium-dependent manner, promoting membrane fusion and endocytosis (2-4). Annexin A1 has anti-inflammatory properties and inhibits phospholipase A2 activity (5,6). Annexin A1 can accumulate on internalized vesicles after EGF-stimulated endocytosis and may be required for a late stage in inward vesiculation (7). Phosphorylation by PKC, EGFR, and Chak1 results in inhibition of annexin A1 function (8-10). Annexin A1 has also been identified as one of the 'eat-me' signals on apoptotic cells that are to be recognized and ingested by phagocytes (11). Annexin A1, as an endogenous anti-inflammatory mediator, has roles in many diverse cellular functions, such as membrane aggregation, inflammation, phagocytosis, proliferation, apoptosis, and tumorigenesis and cancer development (12-14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: Synaptotagmin 1 (SYT1) is an integral membrane protein found in synaptic vesicles thought to play a role in vesicle trafficking and exocytosis (1). Individual SYT1 proteins are composed of an amino-terminal transmembrane region, a central linker region and a pair of carboxy-terminal C2 domains responsible for binding Ca2+ (2). The C2 domains appear to be functionally distinct, with the C2A domain responsible for regulating synaptic vesicle fusion in a calcium-dependent manner during exocytosis while the C2B domain allows for interaction between adjacent SYT1 proteins (3). Because synaptotagmin 1 binds calcium and is found in synaptic vesicles, this integral membrane protein is thought to act as a calcium sensor in fast synaptic vesicle exocytosis. Evidence suggests possible roles in vesicle-mediated endocytosis and glucose-induced insulin secretion as well (4,5). SYT1 binds several different SNARE proteins during calcium-mediated vesicle endocytosis and an association between SYT1 and the SNARE protein SNAP-25 is thought to be a key element in vesicle-mediated exocytosis (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Pig, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Annexin A2 (ANXA2), also known as lipocortin II or calpactin-1 heavy chain, is a 36 kDa member of the annexin superfamily that binds phospholipids and other proteins in a calcium-dependent manner via annexin repeats (1). Annexin A2 contains four such repeats through which it mediates protein-protein and protein-lipid interactions (1-4). It forms a constitutive heterotetramer with S100A10, acting as a bridge between the actin cytoskeleton, plasma membrane, and endocytotic vesicle machinery (5-7). Originally identified as a protein inhibitor of phospholipase A2, annexin A2 has subsequently been shown to interact with an array of protein and non-protein partners, including F-actin, spectrin, SNARE complexes, RNA, and virus particles (4,6,8,9). Annexin A2 has also been shown to have receptor-like activity and is detected on the surface of macrophages and vascular endothelial cells where it mediates macrophage activation and Factor Xa signaling, respectively (10-13). Upregulation of annexin A2 at the cell surface is thought to be modulated by phosphorylation at Tyr23 by Src (14-18). Interestingly, phosphorylation at Tyr23 has recently been shown to be required for cell surface expression of annexin A2 where it mediates motility, invasiveness, and overall metastatic potential of certain pancreatic cancer cells (19,20). Annexin A2 has also been shown to be heavily phosphorylated on serine residues in response to PKC activation via a pleiotropic mechanism (21-23). For a complete list of curated phosphorylation sites on annexin A2, please see PhosphoSitePlus® at www.phosphosite.org.

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Annexin A2 (D11G2) Rabbit mAb #8235.
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Pig, Rat

Application Methods: Flow Cytometry

Background: Annexin A2 (ANXA2), also known as lipocortin II or calpactin-1 heavy chain, is a 36 kDa member of the annexin superfamily that binds phospholipids and other proteins in a calcium-dependent manner via annexin repeats (1). Annexin A2 contains four such repeats through which it mediates protein-protein and protein-lipid interactions (1-4). It forms a constitutive heterotetramer with S100A10, acting as a bridge between the actin cytoskeleton, plasma membrane, and endocytotic vesicle machinery (5-7). Originally identified as a protein inhibitor of phospholipase A2, annexin A2 has subsequently been shown to interact with an array of protein and non-protein partners, including F-actin, spectrin, SNARE complexes, RNA, and virus particles (4,6,8,9). Annexin A2 has also been shown to have receptor-like activity and is detected on the surface of macrophages and vascular endothelial cells where it mediates macrophage activation and Factor Xa signaling, respectively (10-13). Upregulation of annexin A2 at the cell surface is thought to be modulated by phosphorylation at Tyr23 by Src (14-18). Interestingly, phosphorylation at Tyr23 has recently been shown to be required for cell surface expression of annexin A2 where it mediates motility, invasiveness, and overall metastatic potential of certain pancreatic cancer cells (19,20). Annexin A2 has also been shown to be heavily phosphorylated on serine residues in response to PKC activation via a pleiotropic mechanism (21-23). For a complete list of curated phosphorylation sites on annexin A2, please see PhosphoSitePlus® at www.phosphosite.org.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Vesicle-associated membrane protein 2 (VAMP2, also called synaptobrevin) is part of the R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex (1). The SNARE complex is involved in vesicular transport and membrane fusion, a process regulated by calcium (2). In neurons, VAMP2 is predominantly inserted in presynaptic vesicle membranes. Assembly of VAMP2 with the plasma membrane SNAREs syntaxin 1 and SNAP25 is a key event necessary for membrane fusion and neurotransmitter release (2). In addition to this important function, VAMP2 is also involved in granule exocytosis in neutrophils (3) and release of bioactive peptides from cardiac myocytes (4) and juxtaglomerular cells (5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Activation of protein kinase C (PKC) is one of the earliest events in a cascade that controls a variety of cellular responses, including secretion, gene expression, proliferation, and muscle contraction (1,2). PKC isoforms belong to three groups based on calcium dependency and activators. Classical PKCs are calcium-dependent via their C2 domains and are activated by phosphatidylserine (PS), diacylglycerol (DAG), and phorbol esters (TPA, PMA) through their cysteine-rich C1 domains. Both novel and atypical PKCs are calcium-independent, but only novel PKCs are activated by PS, DAG, and phorbol esters (3-5). Members of these three PKC groups contain a pseudo-substrate or autoinhibitory domain that binds to substrate-binding sites in the catalytic domain to prevent activation in the absence of cofactors or activators. Control of PKC activity is regulated through three distinct phosphorylation events. Phosphorylation occurs in vivo at Thr500 in the activation loop, at Thr641 through autophosphorylation, and at the carboxy-terminal hydrophobic site Ser660 (2). Atypical PKC isoforms lack hydrophobic region phosphorylation, which correlates with the presence of glutamic acid rather than the serine or threonine residues found in more typical PKC isoforms. The enzyme PDK1 or a close relative is responsible for PKC activation. A recent addition to the PKC superfamily is PKCμ (PKD), which is regulated by DAG and TPA through its C1 domain. PKD is distinguished by the presence of a PH domain and by its unique substrate recognition and Golgi localization (6). PKC-related kinases (PRK) lack the C1 domain and do not respond to DAG or phorbol esters. Phosphatidylinositol lipids activate PRKs, and small Rho-family GTPases bind to the homology region 1 (HR1) to regulate PRK kinase activity (7).