Interested in promotions? | Click here >>

Monoclonal Antibody Cellular Protein Metabolic Process

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Aminopeptidase N (APN, CD13) is a widely expressed, membrane-bound proteolytic enzyme that breaks down peptides during digestion, cleaves cell surface antigens during antigen presentation, and acts as a receptor for human viruses, including several coronaviruses. This multifunctional protein is implicated in the regulation of many biological processes, including angiogenesis, cell proliferation, cell migration, inflammation and immune response (1,2). APN was originally identified as the cell surface antigen CD13, which is expressed in myeloid lineage hematopoietic cells and myeloid leukemia (3). Identified substrates of aminopeptidase N include the angiotensin I-III peptide hormones, the opioid peptide met-enkephalin, and cytokines MCP-1 and MIP-1 (4). Abnormal APN protein expression is seen in various forms of cancer, with high APN expression associated with poor survival in colon cancer and non-small cell lung cancer and silenced APN expression related to poor prognosis in prostate cancer (5-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Western Blotting

Background: Liver X receptors LXR-α and LXR-β are nuclear hormone receptor superfamily members responsible for regulating expression of target genes that control cholesterol transport and metabolism (1). When bound by the oxidized derivatives of cholesterol (oxysterols), activated LXR receptors function as sterol sensors to regulate transcription of the genes involved in the cholesterol homeostasis (1,2). The LXR-α protein is expressed at high levels in rat liver, kidney, intestine, adipose, and spleen; LXR-β is more ubiquitously expressed within rat tissues (1,3). Research studies indicate that glucose binds and up-regulates the transcriptional activity of LXR-α and LXR-β (4). LXR-α and LXR-β are putative glucose sensors that integrate glucose metabolism and fatty acid biosynthesis in the liver (4). Additional studies show that female mice deficient in LXR-β develop gallbladder cancer (5). In addition, LXR-β plays a role in protecting dopaminergic neurons in a Parkinson disease model (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Pro-Opio-Melano-Cortin (POMC) is a precursor protein expressed in the pituitary and the brain where it is processed into several peptide hormones and neuropeptides. Among these peptides are ACTH, α- and β-MSH, β-and γ-LPH, CLIP, β-endorphin, and N-POMC (1). POMC is involved in hypothalamic circuits regulating feeding behavior and POMC-producing neurons promote satiety (2). POMC neurons are also the target of leptin and insulin for the promotion of the browning of white fat (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: β-galactosidase (also known as β-gal) is an essential hydrolase enzyme that catalyzes the hydrolysis of galactose-containing carbohydrates into monosaccharides. Substrates of β-galactosides include lactose, various glycoproteins, ganglioside GM1, and lactosylceramides. β-galactosidase is used widely in molecular biology; for example, isolation of recombinant bacteria during molecular cloning utilizes α-complementation of the bacterial β-galactosidase gene (lacZ) in the presence of a β-gal substrate to identify recombinant clones (1). In cell biology, Senescence-Associated beta-galactosidase (SA-β-gal), defined as β-gal activity at pH 6.0, is a widely used marker of replicative senescence. While initially thought to derive from a unique isoform of β-galactosidase expressed specifically in senescent cells (2), SA-β-gal activity was subsequently shown to result from overexpression and accumulation of β-galactosidase in endogenous lysosomes, and is not specifically required for replicative senescence (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: The maintenance of glucose homeostasis is an essential physiological process that is regulated by hormones. An elevation in blood glucose levels during feeding stimulates insulin release from pancreatic β cells through a glucose sensing pathway (1). Insulin is synthesized as a precursor molecule, proinsulin, which is processed prior to secretion. A- and B-peptides are joined together by a disulfide bond to form insulin, while the central portion of the precursor molecule is cleaved and released as the C-peptide. Insulin stimulates glucose uptake from blood into skeletal muscle and adipose tissue. Insulin deficiency leads to type 1 diabetes mellitus (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Aminopeptidase N (APN, CD13) is a widely expressed, membrane-bound proteolytic enzyme that breaks down peptides during digestion, cleaves cell surface antigens during antigen presentation, and acts as a receptor for human viruses, including several coronaviruses. This multifunctional protein is implicated in the regulation of many biological processes, including angiogenesis, cell proliferation, cell migration, inflammation and immune response (1,2). APN was originally identified as the cell surface antigen CD13, which is expressed in myeloid lineage hematopoietic cells and myeloid leukemia (3). Identified substrates of aminopeptidase N include the angiotensin I-III peptide hormones, the opioid peptide met-enkephalin, and cytokines MCP-1 and MIP-1 (4). Abnormal APN protein expression is seen in various forms of cancer, with high APN expression associated with poor survival in colon cancer and non-small cell lung cancer and silenced APN expression related to poor prognosis in prostate cancer (5-7).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The matrix metalloproteinases (MMPs) are a family of proteases that target many extracellular proteins including other proteases, growth factors, cell surface receptors, and adhesion molecules (1). Among the family members, MMP-2, MMP-3, MMP-7, and MMP-9 have been characterized as important factors for normal tissue remodeling during embryonic development, wound healing, tumor invasion, angiogenesis, carcinogenesis, and apoptosis (2-4). Research studies have shown that MMP activity correlates with cancer development (2). One mechanism of MMP regulation is transcriptional (5). Once synthesized, MMP exists as a latent proenzyme. Maximum MMP activity requires proteolytic cleavage to generate active MMPs by releasing the inhibitory propeptide domain from the full length protein (5).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated PSA/KLK3 (D6B1) XP® Rabbit mAb #5365.
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Kallikrein 3 (KLK3), also known as Prostate Specific Antigen (PSA), is a member of the glandular kallikrein subfamily of serine proteases (1). It is produced by prostate epithelial cells and is secreted into prostatic ducts. Upon cleavage of 7 amino-terminal amino acids (2), it is activated to liquefy semen in the seminal coagulum. Although PSA/KLK3 is produced in healthy individuals, investigators have found abnormally high levels in the blood of men with advanced prostate cancer (2,3).

$364
400 µl
This Cell Signaling Technology (CST) antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated Sepharose® beads. Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (Sepharose® Bead Conjugate) is useful for immunoprecipitation assays. The unconjugated Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb #4060 reacts with human, mouse, rat, hamster, Drosophila melanogaster, bovine and zebrafish phospho-Akt protein. CST expects that Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (Sepharose® Bead Conjugate) will also recognize phospho-Akt in these species.
APPLICATIONS
REACTIVITY
Bovine, D. melanogaster, Hamster, Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Immunoprecipitation

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$305
400 µl
This Cell Signaling Technology antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated Sepharose® beads. Akt (pan) (C67E7) Rabbit mAb (Sepharose® Bead Conjugate) is useful for the immunoprecipitation of Akt. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Akt (pan) (C67E7) Rabbit mAb #4691.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: The RecQ family of DNA and RNA helicases is a family of enzymes that has been shown to be important to genome integrity (1). Members of this family function in several DNA repair processes including double strand break repair, homologous recombination, and re-initiation of DNA replication at stalled replication forks (2,3). Mutations in RecQ helicase family members results in syndromes that display varying types of chromosomal abnormalities and overall genomic instability (1). WRN is a member of the RecQ family that has been identified as the gene underlying Werner’s syndrome; an autosomal recessive disorder characterized by premature aging and predisposition to cancer (4). Cells from Werner’s Syndrome patients exhibit genomic instability that is associated with deficient DNA repair activity (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: GFAT1, glutamine:fructose-6-phosphate aminotransferase 1, is the rate-limiting enzyme of the hexosamine biosynthesis pathway (1). This enzyme catalyzes the conversion of fructose-6-phosphate and glutamine to glucosamine-6-phosphate and glutamate (2). The hexosamine biosynthesis pathway generates the building blocks for protein and lipid glycosylation (2). Furthermore, studies suggest that increased activity of this pathway is a contributing factor to hyperglycemia-induced insulin resistance (1,2). GFAT1 is more active in non-insulin-dependent diabetes mellitus (NIDDM) patients (3). Transgenice mice overexpressing this enzyme in skeletal muscle and adipose tissue show an insulin resistance phenotype (4,5). GFAT2, an isoenzyme of GFAT1, was later identified (6, 7). Studies show that the regulation of GFAT2 is different from that of GFAT1, suggesting differential regulation of the hexosamine pathway in different tissues (7).

$364
400 µl
This Cell Signaling Technology antibody is immobilized by the covalent reaction of formylbenzamide-modified antibody with hydrazide-activated magnetic bead.Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (Magnetic Bead Conjugate) is useful for immunoprecipitation of Akt phosphorylated at Ser473. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb #4060.
APPLICATIONS
REACTIVITY
Bovine, D. melanogaster, Hamster, Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Immunoprecipitation

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: ATF-4, an activating transcription factor/cAMP-response element-binding protein family member, functions in the PERK and eIF2α ER stress responsive pathway (1-3). ER stress represses the translation of the majority of mRNAs, but selectively stimulates the translation of certain mRNAs including that of ATF-4 (2). Induced expression of ATF-4 increases the expression of genes critical for the recovery from ER stress (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The matrix metalloproteinases (MMPs) are a family of proteases that target many extracellular proteins including other proteases, growth factors, cell surface receptors, and adhesion molecules (1). Among the family members, MMP-2, MMP-3, MMP-7, and MMP-9 have been characterized as important factors for normal tissue remodeling during embryonic development, wound healing, tumor invasion, angiogenesis, carcinogenesis, and apoptosis (2-4). Research studies have shown that MMP activity correlates with cancer development (2). One mechanism of MMP regulation is transcriptional (5). Once synthesized, MMP exists as a latent proenzyme. Maximum MMP activity requires proteolytic cleavage to generate active MMPs by releasing the inhibitory propeptide domain from the full length protein (5).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated eIF4E (C46H6) Rabbit mAb #2067.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Eukaryotic initiation factor 4E (eIF4E) binds to the mRNA cap structure to mediate the initiation of translation (1,2). eIF4E interacts with eIF4G, a scaffold protein that promotes assembly of eIF4E and eIF4A into the eIF4F complex (2). eIF4B is thought to assist the eIF4F complex in translation initiation. Upon activation by mitogenic and/or stress stimuli mediated by Erk and p38 MAPK, Mnk1 phosphorylates eIF4E at Ser209 in vivo (3,4). Two Erk and p38 MAPK phosphorylation sites in mouse Mnk1 (Thr197 and Thr202) are essential for Mnk1 kinase activity (3). The carboxy-terminal region of eIF4G also contains serum-stimulated phosphorylation sites, including Ser1108, Ser1148, and Ser1192 (5). Phosphorylation at these sites is blocked by the PI3 kinase inhibitor LY294002 and by the FRAP/mTOR inhibitor rapamycin.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The matrix metalloproteinases (MMPs) are a family of proteases that target many extracellular proteins including other proteases, growth factors, cell surface receptors, and adhesion molecules (1). Among the family members, MMP-2, MMP-3, MMP-7, and MMP-9 have been characterized as important factors for normal tissue remodeling during embryonic development, wound healing, tumor invasion, angiogenesis, carcinogenesis, and apoptosis (2-4). Research studies have shown that MMP activity correlates with cancer development (2). One mechanism of MMP regulation is transcriptional (5). Once synthesized, MMP exists as a latent proenzyme. Maximum MMP activity requires proteolytic cleavage to generate active MMPs by releasing the inhibitory propeptide domain from the full length protein (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Following protein synthesis, secretory, intra-organellar, and transmembrane proteins translocate into the endoplasmic reticulum (ER) where they are post-translationally modified and properly folded. The accumulation of unfolded proteins within the ER triggers an adaptive mechanism known as the unfolded protein response (UPR) that counteracts compromised protein folding (1). The transmembrane serine/threonine kinase IRE1, originally identified in Saccharomyces cerevisiae, is a proximal sensor for the UPR that transmits the unfolded protein signal across the ER membrane (2-4). The human homolog IRE1α was later identified and is ubiquitously expressed in human tissues (5). Upon activation of the unfolded protein response, IRE1α splices X-box binding protein 1 (XBP-1) mRNA through an unconventional mechanism using its endoribonuclease activity (6). This reaction converts XBP-1 from an unspliced XBP-1u isoform to the spliced XBP-1s isoform, which is a potent transcriptional activator that induces expression of many UPR responsive genes (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: A variety of factors contribute to the important biological event of initiation of translation. The eIF4F complex of translation initiation factors binds to the 5' m7 GTP cap to open up the mRNA secondary structure and allow small ribosome subunit binding (1). eIF4A, an eIF4 complex component that acts as an ATP-dependent RNA helicase, unwinds the secondary structure of the 5' mRNA untranslated region to mediate ribosome binding (2,3). In addition, eIF4A has recently been shown to repress Dpp/BMP signalling in a translation-independent manner in Drosophila (4,5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Adiponectin, also termed AdipoQ, Acrp30, apM1 and GBP28, is an adipokine expressed exclusively in brown and white adipocytes (1). It is secreted into the blood and exists in three major forms: a low molecular weight trimer, a medium molecular weight hexamer and a high molecular weight multimer (1). Adiponectin levels are decreased in obese and insulin-resistant mice and humans (2), suggesting that this adipokine is critical to maintain insulin sensitivity. Adiponectin stimulates the phosphorylation of AMPKα at Thr172 and activates AMPK in skeletal muscle (3). It also stimulates glucose uptake in myocytes (3). The block of AMPK activation by a dominant-negative AMPKα2 isoform inhibits the effect of adiponectin on glucose uptake, indicating that adiponectin stimulates glucose uptake and increases insulin sensitivity through its action on AMPK (3). Adiponectin mutants that are not able to form oligomers larger than trimers have no effect on the AMPK pathway (4). Mutations that render adiponectin unable to form high molecular weight multimers are associated with human diabetes (4), indicating the importance of multimerization for adiponectin activity.