20% off purchase of 3 or more products* | Learn More >>

Monoclonal Antibody Chromatin Ip Ear Development

Also showing Monoclonal Antibody Chromatin Ip Inner Ear Development

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: GATA proteins comprise a group of transcription factors that are related by the presence of conserved zinc finger DNA binding domains, which bind directly to the nucleotide sequence core element GATA (1-3). There are six vertebrate GATA proteins, designated GATA-1 to GATA-6 (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Embryonic stem cells (ESC) derived from the inner cell mass of the blastocyst are unique in their pluripotent capacity and potential for self-renewal (1). Research studies demonstrate that a set of transcription factors that includes Oct-4, Sox2, and Nanog forms a transcriptional network that maintains cells in a pluripotent state (2,3). Chromatin immunoprecipitation experiments show that Sox2 and Oct-4 bind to thousands of gene regulatory sites, many of which regulate cell pluripotency and early embryonic development (4,5). siRNA knockdown of either Sox2 or Oct-4 results in loss of pluripotency (6). Induced overexpression of Oct-4 and Sox2, along with additional transcription factors Klf4 and c-Myc, can reprogram both mouse and human somatic cells to a pluripotent state (7,8). Additional evidence demonstrates that Sox2 is also present in adult multipotent progenitors that give rise to some adult epithelial tissues, including several glands, the glandular stomach, testes, and cervix. Sox2 is thought to regulate target gene expression important for survival and regeneration of these tissues (9).

$293
100 µl
REACTIVITY
Human

Background: Embryonic stem cells (ESC) derived from the inner cell mass of the blastocyst are unique in their pluripotent capacity and potential for self-renewal (1). Research studies demonstrate that a set of transcription factors that includes Oct-4, Sox2, and Nanog forms a transcriptional network that maintains cells in a pluripotent state (2,3). Chromatin immunoprecipitation experiments show that Sox2 and Oct-4 bind to thousands of gene regulatory sites, many of which regulate cell pluripotency and early embryonic development (4,5). siRNA knockdown of either Sox2 or Oct-4 results in loss of pluripotency (6). Induced overexpression of Oct-4 and Sox2, along with additional transcription factors Klf4 and c-Myc, can reprogram both mouse and human somatic cells to a pluripotent state (7,8). Additional evidence demonstrates that Sox2 is also present in adult multipotent progenitors that give rise to some adult epithelial tissues, including several glands, the glandular stomach, testes, and cervix. Sox2 is thought to regulate target gene expression important for survival and regeneration of these tissues (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: NeuroD is a member of the basic helix-loop-helix (bHLH) family of transcription factors. These proteins function by forming heterodimers with E-proteins and binding to the canonical E-box sequence CANNTG (1,2). Neuronal activity results in CaMKII-mediated phosphorylation of NeuroD at Ser336, which is necessary for formation and growth of dendrites (3,4). NeuroD is also phosphorylated at Ser274 though the results are context dependent as phosphorylation by Erk stimulates NeuroD activity in pancreatic β-cells while phosphorylation by GSK-3β inhibits NeuroD in neurons (3). NeuroD is crucially important in both the pancreas and developing nervous system, and plays a large role in the development of the inner ear and mammalian retina (3). Mice lacking NeuroD become severely diabetic and die shortly after birth due to defects in β-cell differentiation (2,3,5,6). The lack of NeuroD in the brain results in severe defects in development (5). Human mutations have been linked to a number of types of diabetes including type I diabetes mellitus and maturity-onset diabetes of the young (1,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Paired box (PAX) proteins are a family of transcription factors that play important and diverse roles in animal development (1). Nine PAX proteins (PAX1-9) have been described in humans and other mammals. They are defined by the presence of an amino-terminal "paired" domain, consisting of two helix-turn-helix motifs, with DNA binding activity (2). PAX proteins are classified into four structurally distinct subgroups (I-IV) based on the absence or presence of a carboxy-terminal homeodomain and a central octapeptide region. Subgroup I (PAX1 and 9) contains the octapeptide but lacks the homeodomain; subgroup II (PAX2, 5, and 8) contains the octapeptide and a truncated homeodomain; subgroup III (PAX3 and 7) contains the octapeptide and a complete homeodomain; and subgroup IV (PAX4 and 6) contains a complete homeodomain but lacks the octapeptide region (2). PAX proteins play critically important roles in development by regulating transcriptional networks responsible for embryonic patterning and organogenesis (3); a subset of PAX proteins also maintain functional importance during postnatal development (4). Research studies have implicated genetic mutations that result in aberrant expression of PAX genes in a number of cancer subtypes (1-3), with members of subgroups II and III identified as potential mediators of tumor progression (2).