20% off purchase of 3 or more products* | Learn More >>

Monoclonal Antibody Chromatin Ip Regulation of Cell Proliferation

$269
100 µl
APPLICATIONS
REACTIVITY
Bovine, Dog, Human, Monkey, Mouse, Pig, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: All organisms respond to increased temperatures and other environmental stresses by rapidly inducing the expression of highly conserved heat shock proteins (HSPs) that serve as molecular chaperones to refold denatured proteins and promote the degradation of damaged proteins. Heat shock gene transcription is regulated by a family of heat shock factors (HSFs), transcriptional activators that bind to heat shock response elements (HSEs) located upstream of all heat shock genes (1). HSEs are highly conserved among organisms and contain multiple adjacent and inverse iterations of the pentanucleotide motif 5'-nGAAn-3'. HSFs are less conserved and share only 40% sequence identity. Vertebrate cells contain four HSF proteins: HSF1, 2 and 4 are ubiquitous, while HSF3 has only been characterized in avian species. HSF1 induces heat shock gene transcription in response to heat, heavy metals, and oxidative agents, while HSF2 is involved in spermatogenesis and erythroid cell development. HSF3 and HSF4 show overlapping functions with HSF1 and HSF2. The inactive form of HSF1 exists as a monomer that localizes to both the cytoplasm and nucleus, but does not bind DNA (1,2). In response to stress, HSF1 becomes phosphorylated, forms homotrimers, binds DNA and activates heat shock gene transcription (1,2). HSF1 activity is positively regulated by phosphorylation of Ser419 by PLK1, which enhances nuclear translocation, and phosphorylation of Ser230 by CaMKII, which enhances transactivation (3,4). Alternatively, HSF1 activity is repressed by phosphorylation of serines at 303 and 307 by GSK3 and ERK1, respectively, which leads to binding of 14-3-3 protein and sequestration of HSF1 in the cytoplasm (5,6). In addition, during attenuation from the heat shock response, HSF1 is repressed by direct binding of Hsp70, HSP40/Hdj-1, and HSF binding protein 1 (HSBP1) (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: The polycomb group (PcG) proteins contribute to the maintenance of cell identity, stem cell self-renewal, cell cycle regulation and oncogenesis by maintaining the silenced state of genes that promote cell lineage specification, cell death and cell-cycle arrest (1-4). PcG proteins exist in two complexes that cooperate to maintain long-term gene silencing through epigenetic chromatin modifications: PRC1 and PRC2. PRC1 is a multi-subunit protein complex consisting of a combination of five core protein families: CBX, RING1, PHC, PCGF, and RYPB (5-7). Different combinations of protein family members lead to a diverse array of PRC1 complexes with distinct functions (8). At least two distinct classes of PRC1 complexes have been defined. The first class, known as canonical PRC1, contains RING1, PHC, PCGF and CBX protein subunits, but not RYPB (5-8). This class of PRC1 complexes requires PRC2 and H3K27Me3 for proper recruitment to target genes. CBX proteins mediate recruitment by binding to H3K27Me3. CBX8 in particular is required for repression of many lineage-specific genes during differentiation of hematopoietic stem cells and may play a role in activation of lineage-specific genes during differentiation of embryonic stem cells (9,10). The second class, known as variant PRC1, contains RYPB instead of CBX proteins (5-8). RYBP-containing PRC1 is recruited to chromatin independently of PRC2 and H3K27Me3. These variant PRC1 complexes can function independently of PRC2, or in some cases function upstream to recruit PRC2 complex to target genes.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Western Blotting

Background: The estrogen-related receptor (ERR) subfamily of orphan nuclear receptors include three protein receptors, ERRα/NR3B1, ERRβ/NR3B2, and ERRγ/NR3B3, that have yet to be associated with natural ligands. PGC-1 coactivators regulate ERR transcription activation ability and receptor-induced transcription of genes involved in lipid metabolism, glucose metabolism, and mitochondrial biogenesis (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Chromatin IP, Chromatin IP-seq, Western Blotting

Background: Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor that is most widely known for its roles in melanocyte, ophthalmic, and osteoclast development (1-3). In humans, MITF can function as a melanoma oncogene (4) and mutations in the corresponding MITF gene are associated with Waardenburg syndrome type 2, an auditory-pigmentary syndrome characterized by developmental defects in cells derived from neural crest (5). At least 12 isoforms of MITF have been identified, which exhibit differential patterns of expression among cell and tissue types (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Western Blotting

Background: Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor that is most widely known for its roles in melanocyte, ophthalmic, and osteoclast development (1-3). In humans, MITF can function as a melanoma oncogene (4) and mutations in the corresponding MITF gene are associated with Waardenburg syndrome type 2, an auditory-pigmentary syndrome characterized by developmental defects in cells derived from neural crest (5). At least 12 isoforms of MITF have been identified, which exhibit differential patterns of expression among cell and tissue types (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: ATP-dependent chromatin remodeling complexes play an essential role in the regulation of nuclear processes such as transcription and DNA replication and repair (1,2). The SWI/SNF chromatin remodeling complex consists of more than 10 subunits and contains a single molecule of either BRM or BRG1 as the ATPase catalytic subunit. The activity of the ATPase subunit disrupts histone-DNA contacts and changes the accessibility of crucial regulatory elements to the chromatin. The additional core and accessory subunits play a scaffolding role to maintain stability and provide surfaces for interaction with various transcription factors and chromatin (2-5). The interactions between SWI/SNF subunits and transcription factors, such as nuclear receptors, p53, Rb, BRCA1, and MyoD, facilitate recruitment of the complex to target genes for regulation of gene activation, cell growth, cell cycle, and differentiation processes (1,6-9).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The polycomb group (PcG) proteins contribute to the maintenance of cell identity, stem cell self-renewal, cell cycle regulation and oncogenesis by maintaining the silenced state of genes that promote cell lineage specification, cell death and cell-cycle arrest (1-4). PcG proteins exist in two complexes that cooperate to maintain long-term gene silencing through epigenetic chromatin modifications. The first complex, EED-EZH2, is recruited to genes by DNA-binding transcription factors and methylates histone H3 on Lys27. Methylation of Lys27 facilitates the recruitment of the second complex, PRC1, which ubiquitinylates histone H2A on Lys119 (5). Suppressor of Zeste 12 (SUZ12) is a component of the PRC2 complex, which together with Ezh2 and Eed is absolutely required for histone methyl-transferase activity (6). SUZ12 contains a C2H2 zinc finger domain similar to the zinc finger domains found in sequence-specific DNA binding proteins and may mediate the interaction between EZH2 and nucleosomes (6). SUZ12 is overexpressed in several human tumors, including tumors of the colon, breast and liver (7,8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The polycomb group (PcG) proteins are involved in maintaining the silenced state of several developmentally regulated genes and contribute to the maintenance of cell identity, cell cycle regulation, and oncogenesis (1,2). Enhancer of zeste homolog 2 (Ezh2), a member of this large protein family, contains four conserved regions including domain I, domain II, and a cysteine-rich amino acid stretch that precedes the carboxy-terminal SET domain (3). The SET domain has been linked with histone methyltransferase (HMTase) activity. Moreover, mammalian Ezh2 is a member of a histone deacetylase complex that functions in gene silencing, acting at the level of chromatin structure (4). Ezh2 complexes methylate histone H3 at Lys9 and 27 in vitro, which is thought to be involved in targeting transcriptional regulators to specific loci (5). Ezh2 is deregulated in various tumor types, and its role, both as a primary effector and as a mediator of tumorigenesis, has become a subject of increased interest (6).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Chromatin IP-seq, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Bcl-11B (Ctip2) is a COUP-TF interacting protein that belongs to the C2H2 type zinc finger protein family (1). Bcl-11B is highly expressed in the brain and is critical for the development of neurons, as well as other tissues and organs. Bcl-11B also plays an essential role in T cell lineage commitment and maintenance of T cell identity (1-3). Two isoforms of Bcl-11B are found to be encoded by the BCL11B gene, possibly through exon-skipping (4). Bcl-11B is a transcription factor which binds to target genes through the 2nd and 3rd zinc-finger domains of exon 4 (3), while also interacting with various protein partners including COUP-TF proteins (1), the NuRD complex (5,6), HDAC1, HDAC2, and SUV39H1 (7). Research studies have shown that mutations and deletion of Bcl-11B contribute to the development of thymic lymphoma in mice and T cell acute lymphoblastic leukemia in humans, indicating a role as a tumor suppressor (4,8). Mechanistic studies have shown that Bcl-11B represses gene expression of the E3 ubiquitin ligase HDM2 in a p53-dependent manner (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: Brn2/POU3F2 is a POU domain-containing transcription factor involved in neuronal differentiation and activation of the corticotrophin-releasing hormone gene (1,2). In mice, disruption of the Brn2 gene results in loss of specific neuronal lineages in the hypothalamus (3). In addition to its role in mammalian neurogenesis, Brn2 has also been implicated in melanoma tumorigenesis and has been shown in the literature to be overexpressed in human melanoma cells compared to normal melanocytes (4,5). Recent studies also identify Brn2 as a transcription factor playing an important role in keratinocyte differentiation (6). Recent reports demonstrate that overexpression of three transcription factors (Brn2, Ascl1, and Myt1L) can directly convert human fibroblasts into functional neurons under precisely defined conditions (7,8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: Jumonji/ARID domain-containing protein 2 (JARID2) is a founding member of the JmjC-domain-containing protein family that is involved in regulation of histone methyltransferase activity (1,2). While many proteins in this family are protein demethylases, JARID2 lacks several conserved residues in the catalytic domain and does not exhibit protein demethylase activity (1,2). Research studies indicate that JARID2 is a nuclear protein that is highly expressed in poorly differentiated and actively dividing cells, with expression decreasing upon cellular differentiation (3,4). Expression of JARID2 protein is essential for embryonic development as the protein plays an important role in regulation of heart and liver development, neural tube fusion, and hematopoiesis (4). JARID2 is an accessory component of the polycomb repressor complex 2 (PRC2), which represses target gene expression through methylation of histone H3 at lysine 27 by EZH2 methyltransferase (5-10). JARID2 recruits the PRC2 complex to target genes and increases EZH2 methyltransferase activity by binding to nucleosomes and DNA (5-10). Additional studies show that loss of JARID2 expression results in decreased recruitment of PRC2, decreased methylation of histone H3 at lysine 27 at target genes, and delayed and incomplete differentiation of embryonic stem cells (5-10). Experimental knockdown of JARID2 in Xenopus laevis impairs the induction of gastrulation genes in blastula embryos and results in differentiation failure (5).

$260
100 µl
REACTIVITY
Human

Background: Bromodomain-containing protein 7 (BRD7, BP75, CELTIX-1) is a conserved bromodomain-containing protein that was first identified in a screen for proteins that interact with the PDZ domain of PSD95 (1). Subsequent studies identified BRD7 as a major component of SWI/SNF chromatin remodeling complexes, where it was shown to interact directly with acetylated histones to regulate gene transcription (2,3). BRD7 also interacts with p53, and was shown to participate directly in p53-dependent transcriptional regulation (4). Loss-of-function BRD7 mutations were identified in a subset of wild-type p53 breast cancer tumor samples, implicating BRD7 as a putative tumor-suppressor of potential clinical significance (5). BRD7 also associates with the BRCA1 protein, an interaction that facilitates recruitment of BRCA1 to the ERα gene promoter (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmits TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the recepter-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Briefly, activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved SSXS motif at the carboxy-terminus of the proteins. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad, Smad4, and together the complex moves to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Acetylation of the histone tail causes chromatin to adopt an "open" conformation, allowing increased accessibility of transcription factors to DNA. The identification of histone acetyltransferases (HATs) and their large multiprotein complexes has yielded important insights into how these enzymes regulate transcription (1,2). HAT complexes interact with sequence-specific activator proteins to target specific genes. In addition to histones, HATs can acetylate nonhistone proteins, suggesting multiple roles for these enzymes (3). In contrast, histone deacetylation promotes a "closed" chromatin conformation and typically leads to repression of gene activity (4). Mammalian histone deacetylases can be divided into three classes on the basis of their similarity to various yeast deacetylases (5). Class I proteins (HDACs 1, 2, 3, and 8) are related to the yeast Rpd3-like proteins, those in class II (HDACs 4, 5, 6, 7, 9, and 10) are related to yeast Hda1-like proteins, and class III proteins are related to the yeast protein Sir2. Inhibitors of HDAC activity are now being explored as potential therapeutic cancer agents (6,7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: p300/CBP-associated factor (PCAF), also known as lysine acetyl-transferase 2B (KAT2B), is a transcriptional adaptor protein and histone acetyl-transferase (HAT) that functions as the catalytic subunit of the PCAF transcriptional co-activator complex (1). PCAF is 73% homologous to GCN5L2, another HAT protein found in similar complexes (1,2). Like GCN5L2, PCAF acetylates histone H3 on Lys14 and histone H4 on Lys8, both of which contribute to gene activation by modulating chromatin structure and recruiting additional co-activator proteins that contain acetyl-lysine binding bromo-domains (3). PCAF also acetylates non-histone proteins including transcriptional activators (p53, E2F1, MyoD), general transcription factors (TFIIEβ and TFIIF) and architectural DNA binding proteins (HMGA1 and HMG17) (4-10). Acetylation of these proteins regulates their nuclear localization, protein stability, DNA binding, and co-activator association.

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: ATP-dependent chromatin remodeling complexes play an essential role in the regulation of various nuclear processes, such as gene expression, DNA replication, and repair (1,2). The SWI/SNF chromatin remodeling complex consists of more than 10 subunits with a single molecule of the ATPase catalytic subunit BRM or BRG1, but not both. The activities of these two subunits drive the disruption of histone-DNA contacts that lead to changes in accessibility of crucial regulatory elements within chromatin (2-5). The BRM/BRG1 containing SWI/SNF complexes are recruited to target promoters by transcription factors, such as nuclear receptors, p53, RB, and BRCA1 to regulate gene activation, cell growth, the cell cycle, and differentiation processes (1,6-9). BRM and BRG1 are also considered to be tumor suppressors and their expression levels are severely reduced in several cancer cell lines (10-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Protein arginine N-methyltransferase 1 (PRMT1) is a member of the protein arginine N-methyltransferase (PRMT) family of proteins that catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a guanidine nitrogen of arginine (1). Though all PRMT proteins catalyze the formation of mono-methyl arginine, Type I PRMTs (PRMT1, 3, 4, and 6) add an additional methyl group to produce an asymmetric di-methyl arginine while Type II PRMTs (PRMT 5 and 7) produce symmetric di-methyl arginine (1). Mono-methyl arginine, but not di-methyl arginine, can be converted to citrulline through deimination catalyzed by enzymes such as PADI4 (2). Most PRMTs, including PRMT1, methylate arginine residues found within glycine-arginine rich (GAR) protein domains, such as RGG, RG, and RXR repeats (1). However, PRMT4/CARM1 and PRMT5 methylate arginine residues within PGM (proline-, glycine-, methionine-rich) motifs (3). PRMT1 methylates Arg3 of histone H4 and cooperates synergistically with p300/CBP to enhance transcriptional activation by nuclear receptor proteins (4-6). In addition, PRMT1 methylates many non-histone proteins, including the orphan nuclear receptor HNF4 (6), components of the heterogeneous nuclear ribonucleoprotein (hnRNP) particle (7), the RNA binding protein Sam68 (8), interleukin enhancer-binding factor 3 (ILF3) (9) and interferon-α and β receptors (10). These interactions suggest additional functions in transcriptional regulation, mRNA processing and signal transduction. Alternative mRNA splicing produces three enzymatically active PRMT1 isoforms that differ in their amino-terminal regions (11). PRMT1 is localized to the nucleus or cytoplasm, depending on cell type (12,13), and appears in many distinct protein complexes. ILF3, TIS21 and the leukemia-associated BTG1 proteins bind PRMT1 to regulate its methyltransferase activity (9,14).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Members of the Myc/Max/Mad network function as transcriptional regulators with roles in various aspects of cell behavior including proliferation, differentiation and apoptosis (1). These proteins share a common basic-helix-loop-helix leucine zipper (bHLH-ZIP) motif required for dimerization and DNA-binding. Max was originally discovered based on its ability to associate with c-Myc and found to be required for the ability of Myc to bind DNA and activate transcription (2). Subsequently, Max has been viewed as a central component of the transcriptional network, forming homodimers as well as heterodimers with other members of the Myc and Mad families (1). The association between Max and either Myc or Mad can have opposing effects on transcriptional regulation and cell behavior (1). The Mad family consists of four related proteins; Mad1, Mad2 (Mxi1), Mad3 and Mad4, and the more distantly related members of the bHLH-ZIP family, Mnt and Mga. Like Myc, the Mad proteins are tightly regulated with short half-lives. In general, Mad family members interfere with Myc-mediated processes such as proliferation, transformation and prevention of apoptosis by inhibiting transcription (3,4).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Acetylation of the histone tail causes chromatin to adopt an "open" conformation, allowing increased accessibility of transcription factors to DNA. The identification of histone acetyltransferases (HATs) and their large multiprotein complexes has yielded important insights into how these enzymes regulate transcription (1,2). HAT complexes interact with sequence-specific activator proteins to target specific genes. In addition to histones, HATs can acetylate nonhistone proteins, suggesting multiple roles for these enzymes (3). In contrast, histone deacetylation promotes a "closed" chromatin conformation and typically leads to repression of gene activity (4). Mammalian histone deacetylases can be divided into three classes on the basis of their similarity to various yeast deacetylases (5). Class I proteins (HDACs 1, 2, 3, and 8) are related to the yeast Rpd3-like proteins, those in class II (HDACs 4, 5, 6, 7, 9, and 10) are related to yeast Hda1-like proteins, and class III proteins are related to the yeast protein Sir2. Inhibitors of HDAC activity are now being explored as potential therapeutic cancer agents (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: TAZ is a transcriptional co-activator with a PDZ-binding motif that is regulated by its interaction with 14-3-3 proteins (1). TAZ shares homology with the WW domain of Yes-associated protein (YAP) (1). TAZ is proposed to modulate the switch between proliferation and differentiation of mesenchymal stem cells (MSC) via interaction with transcription factors Runx2 and PPARγ. This process is critical to normal tissue development and the prevention of tumor formation. Due to its role in determination of MSC fate, TAZ may have clinical relevance to several human diseases caused by an imbalance of MSC differentiation (2,3). TAZ is negatively regulated via phosphorylation by LATS1/2, core kinases in the Hippo signaling pathway that controls stem cell development, tissue growth and tumor development (4).