Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Cilium Biogenesis

Also showing Monoclonal Antibody Western Blotting Cilium Biogenesis

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The Rab8 GTPase is a member of the Ras superfamily that functions in protein transport and membrane restructuring (1). Studies show that Rab8 is localized to the trans Golgi network (TGN), basolateral membrane, and vesicular structures where it helps regulate target protein transport between TGN and the basolateral membrane (1-3). Overexpression studies and mutation analysis of Rab8 and its associated Rab8GEF indicate additional roles in actin and microtubule remodeling during polarized membrane transport and membrane protrusion formation (4-6). Rab8 associates with myosin Vb and is required for translocation of GLUT4 following insulin stimulation in muscle (7,8). Control of target protein vesicle transport by Rab8 also regulates MT1-MMP activity during extracellular matrix formation and JRAB/MICAL-L2 at tight junction formation (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Kinesin superfamily proteins (KIFs) are molecular motors that drive directional, microtubule-dependent intracellular transport of membrane-bound organelles and other macromolecules (e.g. proteins, nucleic acids). The intracellular transport functions of KIFs are fundamentally important for a variety of cellular functions, including mitotic and meiotic division, motility/migration, hormone and neurotransmitter release, and differentiation (1-4). Disruptions to KIF-mediated intracellular transport have been linked with a variety of pathologies, ranging from tumorigenesis to defects in higher order brain function such as learning and memory (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Ras-related protein Rab1A (Rab1A) is a member of the Ras superfamily of cellular G proteins that function in protein transport and membrane restructuring (1). Early immunofluorescence studies determined that Rab1A localizes to a region between the endoplasmic reticulum (ER) and the Golgi complex, and in early Golgi compartments (2). Rab1A binds and recruits the COPII complex tethering factor p115 to a cis-SNARE complex associated with COPII-coated, budding vesicles on the endoplasmic reticulum (3). A Rab1 effector complex containing several proteins, including the cis-Golgi tethering protein GM130 and the stacking protein GRASP65, is essential for targeting and fusion of COPII-coated vesicles with the Golgi complex (4). Rab1A also interacts with the golgin tethering and docking proteins giantin (GOLGB1) and golgin-84 to regulate Golgi structure formation and function (5,6). Thus, Rab1A plays an important role in mediating the export of newly synthesized target proteins from ER to the Golgi. As with other Rab proteins, Rab1A function requires an intrinsic GTPase cycling activity facilitated by associated GEF and GAP factors (7-9). In addition to mediating ER to Golgi transport, Rab1A is also involved in autophagy during early autophagosome formation (10,11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Ras-related protein Rab1A (Rab1A) is a member of the Ras superfamily of cellular G proteins that function in protein transport and membrane restructuring (1). Early immunofluorescence studies determined that Rab1A localizes to a region between the endoplasmic reticulum (ER) and the Golgi complex, and in early Golgi compartments (2). Rab1A binds and recruits the COPII complex tethering factor p115 to a cis-SNARE complex associated with COPII-coated, budding vesicles on the endoplasmic reticulum (3). A Rab1 effector complex containing several proteins, including the cis-Golgi tethering protein GM130 and the stacking protein GRASP65, is essential for targeting and fusion of COPII-coated vesicles with the Golgi complex (4). Rab1A also interacts with the golgin tethering and docking proteins giantin (GOLGB1) and golgin-84 to regulate Golgi structure formation and function (5,6). Thus, Rab1A plays an important role in mediating the export of newly synthesized target proteins from ER to the Golgi. As with other Rab proteins, Rab1A function requires an intrinsic GTPase cycling activity facilitated by associated GEF and GAP factors (7-9). In addition to mediating ER to Golgi transport, Rab1A is also involved in autophagy during early autophagosome formation (10,11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Rab17 belongs to the Rab family of small Ras-like GTPases. It is specifically expressed in epithelial cells and is upregulated during cell polarization (1). Immunofluorescence staining studies indicate that Rab17 is associated with the perinuclear recycling endosome in nonpolarized epithelial cells and with the apical recycling endosome in polarized epithelial cells (2). The function of Rab17 remains unclear. Reports of Rab17 colocalization with internalized IgA in the apical endosome suggest that it may regulate receptor-mediated transcytosis (3). Rab17 has also been shown to regulate melanocytic filopodia formation and melanosome trafficking. siRNA knockdown of Rab17 in melanoma cells induces melanosome accumulation in the cell periphery (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Actin nucleation, the formation of new actin filaments from existing filaments, affects actin filament structure during cell motility, division, and intracellular trafficking. An important actin nucleation protein complex is the highly conserved ARP2/3 complex, consisting of ARP2, ARP3, and ARPC1-5. The ARP2/3 complex promotes branching of an existing actin filament and formation of a daughter filament following activation by nucleation-promoting factors, such as WASP/WAVE or cortactin (1). The formation of podosomes, small cellular projections that degrade the extracellular matrix, is enhanced by ARP2/3 complex action. ARP2/3 competes with caldesmon, an actin binding protein shown to negatively affect podosome formation (2). Along with N-WASP, the ARP2/3 complex regulates nuclear actin filament nucleation and controls actin polymerization during transcription (3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: CELSR2 (cadherin EGF LAG seven-pass G-type receptor, also known as flamingo homolog 3 or epidermal growth factor-like protein 2) is a member of the flamingo subfamily of non-classical cadherins, part of the cadherin superfamily. CELSR2 is a 7-transmembrane helix receptor that contains nine cadherin-like domains, seven EGF-like repeats, and 2 laminin A G-type repeats (1). It shares structural characteristics of both an adhesion molecule and a G protein-coupled receptor, suggesting putatives roles in both cell-cell adhesion and juxtacrine signaling. It's function has been associated with dendrite morphogenesis (2), neural plate anterior-posterior pattern formation (3), and regulation of transcription via the Wnt signaling pathway (4). In a loss-of-function mouse model, Celsr2 deletion resulted in defects in the planar organization of ependymal cilia, leading to defective cerebrospinal fluid dynamics and hydrocephalus (5). In humans, SNPs in the CELSR2 gene cluster on chromosome 1 have been associated with enhanced risk of coronary artery disease (6).