Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Flow Cytometry Endochondral Ossification

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Runt-related transcription factor 2 (RUNX2) is a member of the RUNX family of transcription factors. It is involved in osteoblast differentiation and skeletal morphogenesis. RUNX2 regulates the transcription of various genes, including osteopontin, bone sialoprotein, and osteocalcin, via binding to the core site of the enhancers or promoters (1-3). RUNX2 is crucial for the maturation of osteoblasts and both intramembranous and endochondral ossification. Mutations in the corresponding RUNX2 gene have been associated with the bone development disorder cleidocranial dysplasia (CCD) (4-6). RUNX2 is also abnormally expressed in various human cancers including prostate cancer and breast cancer. It plays an important role in migration, invasion, and bone metastasis of prostate and breast cancer cells (7-10).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated RUNX2 (D1L7F) Rabbit mAb #12556.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: Runt-related transcription factor 2 (RUNX2) is a member of the RUNX family of transcription factors. It is involved in osteoblast differentiation and skeletal morphogenesis. RUNX2 regulates the transcription of various genes, including osteopontin, bone sialoprotein, and osteocalcin, via binding to the core site of the enhancers or promoters (1-3). RUNX2 is crucial for the maturation of osteoblasts and both intramembranous and endochondral ossification. Mutations in the corresponding RUNX2 gene have been associated with the bone development disorder cleidocranial dysplasia (CCD) (4-6). RUNX2 is also abnormally expressed in various human cancers including prostate cancer and breast cancer. It plays an important role in migration, invasion, and bone metastasis of prostate and breast cancer cells (7-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: SH2-containing inositol phosphatase 1 (SHIP1) is a hematopoietic phosphatase that hydrolyzes phosphatidylinositol-3,4,5-triphosphate to phosphatidylinositol-3,4-bisphosphate (1). SHIP1 is a cytosolic phosphatase with an SH2 domain in its amino terminus and two NPXY Shc binding motifs in its carboxy terminus (1,2). Upon receptor cross-linking, SHIP is first recruited to the membrane junction through binding of its SH2 domain to the phospho-tyrosine in the ITIM motif (2), followed by tyrosine phosphorylation on the NPXY motif (2). The membrane relocalization and phosphorylation on the NPXY motif is essential for the regulatory function of SHIP1 (3-5). Its effect on calcium flux, cell survival, growth, cell cycle arrest, and apoptosis is mediated through the PI3K and Akt pathways (3-5). Tyr1021 is located in one of the NPXY motifs in SHIP1, and its phosphorylation is important for SHIP1 function (6).

$336
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: SH2-containing inositol phosphatase 1 (SHIP1) is a hematopoietic phosphatase that hydrolyzes phosphatidylinositol-3,4,5-triphosphate to phosphatidylinositol-3,4-bisphosphate (1). SHIP1 is a cytosolic phosphatase with an SH2 domain in its amino terminus and two NPXY Shc binding motifs in its carboxy terminus (1,2). Upon receptor cross-linking, SHIP is first recruited to the membrane junction through binding of its SH2 domain to the phospho-tyrosine in the ITIM motif (2), followed by tyrosine phosphorylation on the NPXY motif (2). The membrane relocalization and phosphorylation on the NPXY motif is essential for the regulatory function of SHIP1 (3-5). Its effect on calcium flux, cell survival, growth, cell cycle arrest, and apoptosis is mediated through the PI3K and Akt pathways (3-5). Tyr1021 is located in one of the NPXY motifs in SHIP1, and its phosphorylation is important for SHIP1 function (6).