Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Immunofluorescence Frozen Ion Transport

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Nitric Oxide Synthase (NOS) catalyzes the formation of nitric oxide (NO) and citruline from L-arginine, oxygen and cofactors. Three family members have been characterized: neuronal NOS (nNOS), which is found primarily in neuronal tissue; inducible NOS (iNOS), which is induced by interferon gamma and lipopolysaccharides in the kidney and cardiovascular system; and endothelial NOS (eNOS), which is expressed in blood vessels (1). NO is a messenger molecule with diverse functions throughout the body including the maintenance of vascular integrity, homeostasis, synaptic plasticity, long-term potentiation, learning, and memory (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: Ryanodine receptors (RyRs) are large (>500 kDa), intracellular calcium channels found in the sarcoplasmic/endoplasmic reticulum membrane and are responsible for the release of Ca2+ from intracellular stores in excitable cells, such as muscle and neurons. RyRs exist as three mammalian isoforms (RyR1-3), all of which form homotetramers regulated by phosphorylation and/or direct or indirect interaction with a variety of proteins (L-type calcium channels, PKA, FKBP12/12.6, CaMKII, calmodulin, calsequestrin, junctin, and triadin) and ions (Mg2+ and Ca2+). Regulation of the RyR channel by protein modulators occurs within the large cytoplasmic domain, whereas the carboxy-terminal portion of the protein forms the ion-binding and conducting pore (1,2). RyR1 and RyR2 are predominantly expressed in skeletal and cardiac muscle, respectively, where they localize exclusively to the sarcoplasmic reticulum (SR) and facilitate calcium-mediated communication between transverse-tubules and sarcoplasmic reticulum. Contraction of skeletal muscle is triggered by release of calcium ions from the SR following depolarization of T-tubules. Research studies have shown that defects in RyR1 are the cause of malignant hyperthermia susceptibility type 1 (MHS1), central core disease of muscle (CCD), multiminicore disease with external ophthalmoplegia, and congenital myopathy with fiber-type disproportion (CFTD), each of which is manifested by defects in muscle function, metabolism, and development (2). Investigators have shown that defects in RyR2 are the cause of familial arrhythmogenic right ventricular dysplasia type 2 (ARVD2) and catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1), both of which are implicated in sudden death syndromes as a result of electrical instability and degeneration of the ventricular myocardium or stress-induced ventricular tachycardia (2). Despite low levels of expression in skeletal and smooth muscle, RyR3 is the dominant isoform in neuronal cells (hippocampal neurons, thalamus, Purkinje cells) and has been implicated in synaptic plasticity, dendritic spine remodeling, and spatial memory formation (3). The role of RyR3 in neuronal function has been substantiated by mice lacking RyR3, which demonstrate normal motor function, but possess numerous behavioral and social defects (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry)

Background: Anion exchange protein 1 (AE1), also named solute carrier family 4 member 1 (SLC4A1), is an anion transporter that mediates chloride-bicarbonate exchange in the kidney and regulates normal acidification of the urine (1,2). A different isoform of AE1 is a major integral membrane structure protein of erythrocytes, where it plays a critical role in the removal of carbon dioxide from tissues (3). In addition, AE1 is required for normal flexibility and stability of the erythrocyte membrane. Mutations in SLC4A1 can lead to hereditary spherocytosis, ovalocytosis, and distal renal tubular-acidosis (4-7). Other mutations that do not cause disease became novel blood group antigens, which are part of the Diego blood group system (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: CaMKII is an important member of the calcium/calmodulin-activated protein kinase family, functioning in neural synaptic stimulation and T cell receptor signaling (1,2). CaMKII has catalytic and regulatory domains. Ca2+/calmodulin binding to the CaMKII regulatory domain relieves autoinhibition and activates the kinase (3). The activated CaMKII further autophosphorylates at Thr286 to render the kinase constitutively active (3). The threonine phosphorylation state of CaMKII can be regulated through PP1/PKA. PP1 (protein phosphatase 1) dephosphorylates phospho-CaMKII at Thr286. PKA (protein kinase A) prevents phospho-CaMKII (Thr286) dephosphorylation through an inhibitory effect on PP1 (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: Glutamatergic neurons release glutamate, the most common excitatory neurotransmitter. Their synaptic vesicles are filled with glutamate by vesicular glutamate transporters, VGLUTs (1). VGLUT1, also called solute carrier family 17 member 7 (SLC17A7), was first identified as an inorganic phosphate transporter (2). Despite the absence of homology with neurotransmitter transporters, VGLUT1 was later demonstrated to be a glutamate transporter (1) specific to glutamatergic neurons (3). Closely related to VGLUT1, VGLUT2 and VGLUT3 are also involved in glutamate uptake into synaptic vesicles, but define different neuronal subpopulations (4,5). VGLUT1 and VGLUT2 are the most abundant isoforms. VGLUT1 is expressed in the cortex, hippocampus, and cerebellar cortex, while VGLUT2 is mostly found in the thalamus (6,7). VGLUT3 is expressed in hair cells of the auditory system (8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunofluorescence (Frozen)

Background: The electroneutral cation-chloride-coupled co-transporter (SLC12) gene family comprises bumetanide-sensitive Na+/K+/Cl- (NKCC), thiazide-sensitive Na+/Cl-, and K+/Cl- (KCC) co-transporters. SLC12A1/NKCC2 and SLC12A2/NKCC1 regulate cell volume and maintain cellular homeostasis in response to osmotic and oxidative stress (1). The broadly expressed NKCC1 is thought to play roles in fluid secretion (i.e. salivary gland function), salt balance (i.e. maintenance of renin and aldosterone levels), and neuronal development and signaling (2-7). During neuronal development, NKCC1 and KCC2 maintain a fine balance between chloride influx (NKCC1) and efflux (KCC2), which regulates γ-aminobutyric acid (GABA)-mediated neurotransmission (3). Increased NKCC1 expression in immature neurons maintains high intracellular chloride levels that result in inhibitory GABAergic signaling; KCC2 maintains low intracellular chloride levels and excitatory GABAergic responses in mature neurons (4,5,8). Deletion of NKCC1 impairs NGF-mediated neurite outgrowth in PC-12D cells while inhibition of NKCC1 with bumetanide inhibits re-growth of axotomized dorsal root ganglion cells (6,7). Defective chloride homeostasis in neurons is linked to seizure disorders that are ameliorated by butemanide treatment, indicating that abnormal NKCC1 and NKCC2 expression or signaling may play a role in neonatal and adult seizures (9-12). NKCC1 is found as a homodimer or within heterooligomers with other SLC12 family members. This transport protein associates with a number of oxidative- and osmotic-responsive kinases that bind, phosphorylate, and activate NKCC1 co-transporter activity (13-16). In response to decreased intracellular chloride concentrations, Ste20-related proline-alanine-rich kinase (SPAK) phosphorylates NKCC1 to increase co-transporter activity and promote chloride influx (16-19). Oxidative stress response kinase 1 (OSR1) also phosphorylates and activates NKCC1 in response to oxidative stress (14).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen)

Background: The Na-K-2Cl cotransporter (NKCC2) is a sodium-potassium-chloride cotransporter. It is mainly expressed on the luminal membrane of renal epithelial cells of the thick ascending limb of Henle's loop (TALH) and mediates the majority of NaCl resorption and concentration of urine (1,2). NKCC2 is the target for several diuretic drugs, such as bumetanide, and is involved in the pathogenesis of hypertension (3,4). Mutations in the NKCC2-encoding gene, SLC12A1, causes Bartter’s syndrome, which is featured by impaired salt reabsorption in the TALH, hypokalemic metabolic alkalosis, and hypercalciuria (5,6). Recently, NKCC2 was reported to be expressed in the brain hypothalamo-neurohypophyseal system (HNS) and upregulated upon osmotic stress (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: The potassium/chloride cotransporter 2 (KCC2, SLC12A5) is a neuron-specific transport protein responsible for regulating the cotransport of potassium and chloride ions. KCC2 uses the energy of the electrochemical potassium gradient to export chloride ions from cells, therefore maintaining intracellular chloride ion concentrations in mature neurons (1,2). The intracellular concentration of chloride ions determines the neuronal response to the inhibitory neurotransmitter GABA and glycine. As a result, KCC2 can play a critical role in regulating neuronal excitability in mature central nervous system neurons (3-5). Altered KCC2 expression and reduced KCC2 activity can result in an increase in intracellular chloride ion concentrations and subsequent hyperexcitability of neuronal systems. Cases of aberrant KCC2 function are associated with neurological disorders, such as multiple forms of epilepsy, neuropathic pain, and schizophrenia (6-10).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: Several protein-protein interactions are essential to membrane fusion during endocytosis. Membrane fusion requires interaction among SNARE1 proteins associated with both donor and acceptor membranes (1,2). Following membrane fusion, the α-SNAP cytoplasmic adapter protein binds to the SNARE complex. N-ethylmaleimide-sensitive factor (NSF), a hexameric ATPase, then associates with the α-SNAP/SNARE complex to mediate SNARE disassembly during membrane fusion (3,4). The ATPase activity of NSF induces a conformational change in the α-SNAP/SNARE complex that leads to its dissociation from the membrane, membrane fusion and eventual recycling of the SNARE complex for subsequent membrane fusion (3,4).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. During neurotransmission, glutamate is released from vesicles of the pre-synaptic cell, and glutamate receptors (e.g. NMDA Receptor, AMPA Receptor) bind glutamate for activation at the opposing post-synaptic cell. Excitatory amino acid transporters (EAATs) regulate and maintain extracellular glutamate concentrations below excitotoxic levels. In addition, glutamate transporters may limit the duration of synaptic excitation by an electrogenic process in which the transmitter is cotransported with three sodium ions and one proton, followed by countertransport of a potassium ion. Five EAATs (EAAT1-5) are characterized: EAAT2 (GLT-1) is primarily expressed in astrocytes but is also expressed in neurons of the retina and during fetal development (1). Homozygous EAAT2 knockout mice have spontaneous, lethal seizures and an increased predisposition to acute cortical injury (2). PKC phosphorylates Ser113 of EAAT2 and coincides with glutamate transport (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: During neurotransmission, glutamate is released from vesicles of the presynaptic cell, and glutamate receptors (e.g., NMDA Receptor, AMPA Receptor) bind glutamate for activation at the opposing postsynaptic cell. Excitatory amino acid transporters (EAATs) regulate and maintain extracellular glutamate concentrations below excitotoxic levels (1,2). In addition, glutamate transporters may limit the duration of synaptic excitation by an electrogenic process in which the transmitter is cotransported with three sodium ions and one proton, followed by countertransport of a potassium ion (1,2). Five EAATs (EAAT1-5) have been identified. EAAT1 and EAAT2 are expressed mainly in glia, while EAAT3, EAAT4, and EAAT5 are considered to be neuronal transporters (2). EAAT3 is found in the perisynaptic areas and cell bodies of glutamatergic and GABAergic neurons (3). Research studies have implicated abnormal EAAT3 expression in the pathophysiology of Schizophrenia (4,5).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Neuropeptide Y (NPY) is a 36 amino acid peptide that belongs to the pancreatic polypeptide (PP) family, which also includes peptide YY (PYY) (1). The mature 36-residue NPY is produced from a larger pre-pro 97-residue NPY precursor through a series of cleavage reactions at dibasic sites and C-terminal amidation of the peptide product (2). NPY is widely expressed in the central nervous system (3) and exerts its action through stimulation of 5 different receptors (Y1-Y5) that belong to the G protein-coupled receptor family (4). NPY in the hypothalamus exhibits orexigenic activity through activation of Y1 and Y5 receptors (5). NPY is involved in the control of bone homeostasis, through the regulation of osteoblast activity by Y1 and Y2 receptors (6), and the regulation of testosterone secretion by activating Y1 receptor in testicular vessels (7). Research studies suggest that modulation of NPY activity and signaling represents a potential strategy for the development of appetite control and antiobesity agents (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin)

Background: Orexin, also called HCRT or hypocretin, is expressed as a precursor that is processed into two biologically active neuropeptides called orexin-A (HCRT1) and orexin-B (HCRT2) (1). Orexin is expressed in the lateral and posterior hypothalamus and plays a role in feeding behavior (1). The orexin neuropeptides act by stimulating the two orexin receptors that belong to the G Protein-Coupled Receptors family (1). Orexin receptor 1 is mostly found in the hypothalamic region, while orexin receptor 2 is also found in the cerebral cortex and the nucleus accumbent (2). Orexin also plays a role in adipocyte homeostasis and is required for brown adipose tissue development, differentiation, and function (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen)

Background: Vasoactive intestinal polypeptide (VIP) is a neuropeptide synthesized as a precursor that is processed to an active mature peptide of 28 residues (1). VIP is produced by neurons, endocrine, and immune cells and is expressed in many tissues, in agreement with its various biological functions (2). VIP acts through activation of two receptors belonging to the G protein-coupled receptor family, VPAC1 and VPAC2 (2) and elicits several effects such as vasodilation, regulation of smooth muscle cell contractility, and blood flow in the gastrointestinal track (3,4). In addition, VIP is involved in the regulation of T cell differentiation (6), and in immunosuppression (7,8).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin)

Background: Adenosine Receptor A2a (A2AR) is a G-protein-coupled receptor (GPCR). As a member of the purinergic adenosine receptors (A1, A2, and A3), A2AR activates classic G-protein signaling pathways upon binding of adenosine (1). Adenosine is present in all cells and extracellular fluids. Adenosine signaling, via A2AR, is mobilized during both physiological and pathological conditions. For example, adenosine, via A2AR, modulates neuronal function, acting to fine-tune neuronal function (2). A2AR function is modulated, in part, by its ability to form functional heteromers with other GPCRs, including dopamine receptors (D1 and D3), metabotropic glutamate receptors (mGluR5), and others (3). In the brain, A2AR is enriched in the basal ganglia, suggesting that A2AR may be a potential drug target for neurodegenerative diseases like Parkinson’s disease, drug addiction, and psychiatric disorders (4). Outside of the brain, A2AR may act as an immune checkpoint molecule to maintain an immunosuppressive tumor microenvironment, an environment that exhibits relatively elevated adenosine levels (5, 6).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen)

Background: Vasopressin is a neuroendocrine peptide that is released to the circulation by magnocellular neurons whose cell bodies are mainly found in the paraventricular and the supraoptic nuclei of the hypothalamus. It was first isolated from pituitary gland extracts and synthesized in 1951 (1). Vasopressin acts by activating G protein-coupled, V1a, V1b (also known as V3) and V2 receptors and plays a fundamental role in the maintenance of water homeostasis. One of its main functions is body water retention (2), hence its alternative name antidiuretic hormone or ADH. Vasopressin also leads to increased arterial blood pressure by raising peripheral vascular resistance (3). Vasopressin is also involved in other physiological processes such as acute heart failure (4), pain (5), and metabolic syndrome (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: α-Synuclein is a protein of 140-amino acids expressed abundantly in the brain. α-Synuclein is also the main component of pathogenic Lewy bodies and Lewy neurites. Research studies have shown that mutations of the α-synuclein gene are linked to Parkinson's disease (1).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: α-Synuclein is a protein of 140-amino acids expressed abundantly in the brain. α-Synuclein is also the main component of pathogenic Lewy bodies and Lewy neurites. Research studies have shown that mutations of the α-synuclein gene are linked to Parkinson's disease (1).

$115
20 µl
$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Western Blotting

Background: Amyloid β (Aβ) precursor protein (APP) is a 100-140 kDa transmembrane glycoprotein that exists as several isoforms (1). The amino acid sequence of APP contains the amyloid domain, which can be released by a two-step proteolytic cleavage (1). The extracellular deposition and accumulation of the released Aβ fragments form the main components of amyloid plaques in Alzheimer's disease (1). APP can be phosphorylated at several sites, which may affect the proteolytic processing and secretion of this protein (2-5). Phosphorylation at Thr668 (a position corresponding to the APP695 isoform) by cyclin-dependent kinase is cell-cycle dependent and peaks during G2/M phase (4). APP phosphorylated at Thr668 exists in adult rat brain and correlates with cultured neuronal differentiation (5,6).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Huntington's Disease (HD) is a fatal neurodegenerative disorder characterized by psychiatric, cognitive, and motor dysfunction. Neuropathology of HD involves specific neuronal subpopulations: GABA-ergic neurons of the striatum and neurons within the cerebral cortex selectively degenerate (1,2). The genetic analysis of HD has been the flagship study of inherited neurological diseases from initial chromosomal localization to identification of the gene.Huntingtin is a large (340-350 kD) cytosolic protein that may be involved in a number of cellular functions such as transcription, gastrulation, neurogenesis, neurotransmission, axonal transport, neural positioning, and apoptosis (2,3). The HD gene from unaffected individuals contains between 6 and 34 CAG trinucleotide repeats, with expansion beyond this range causing the onset of disease symptoms. A strong inverse correlation exists between the age of onset in patients and the number of huntingtin gene CAG repeats encoding a stretch of polyglutamine peptides (1,2). The huntingtin protein undergoes numerous post-translational modifications including phosphorylation, ubiquitination, sumoylation, palmitoylation, and cleavage (2). Phosphorylation of Ser421 by Akt can partially counteract the toxicity that results from the expanded polyglutamine tract. Varying Akt expression in the brain correlates with regional differences in huntingtin protein phosphorylation; this pattern inversely correlates with the regions that are most affected by degeneration in diseased brain (2). A key step in the disease is the proteolytic cleavage of huntingtin protein into amino-terminal fragments that contain expanded glutamine repeats and translocate into the nucleus. Caspase mediated cleavage of huntingtin at Asp513 is associated with increased polyglutamine aggregate formation and toxicity. Phosphorylation of Ser434 by CDK5 protects against cleavage (2,3).