20% off purchase of 3 or more products* | Learn More >>

Monoclonal Antibody Immunofluorescence Frozen Potassium Ion Import

Also showing Monoclonal Antibody Immunofluorescence Frozen Potassium Ion Symporter Activity, Monoclonal Antibody Immunofluorescence Frozen Potassium Ion Homeostasis, Monoclonal Antibody Immunofluorescence Frozen Cell Volume Homeostasis

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen)

Background: The Na-K-2Cl cotransporter (NKCC2) is a sodium-potassium-chloride cotransporter. It is mainly expressed on the luminal membrane of renal epithelial cells of the thick ascending limb of Henle's loop (TALH) and mediates the majority of NaCl resorption and concentration of urine (1,2). NKCC2 is the target for several diuretic drugs, such as bumetanide, and is involved in the pathogenesis of hypertension (3,4). Mutations in the NKCC2-encoding gene, SLC12A1, causes Bartter’s syndrome, which is featured by impaired salt reabsorption in the TALH, hypokalemic metabolic alkalosis, and hypercalciuria (5,6). Recently, NKCC2 was reported to be expressed in the brain hypothalamo-neurohypophyseal system (HNS) and upregulated upon osmotic stress (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: The potassium/chloride cotransporter 2 (KCC2, SLC12A5) is a neuron-specific transport protein responsible for regulating the cotransport of potassium and chloride ions. KCC2 uses the energy of the electrochemical potassium gradient to export chloride ions from cells, therefore maintaining intracellular chloride ion concentrations in mature neurons (1,2). The intracellular concentration of chloride ions determines the neuronal response to the inhibitory neurotransmitter GABA and glycine. As a result, KCC2 can play a critical role in regulating neuronal excitability in mature central nervous system neurons (3-5). Altered KCC2 expression and reduced KCC2 activity can result in an increase in intracellular chloride ion concentrations and subsequent hyperexcitability of neuronal systems. Cases of aberrant KCC2 function are associated with neurological disorders, such as multiple forms of epilepsy, neuropathic pain, and schizophrenia (6-10).