20% off purchase of 3 or more products* | Learn More >>

Monoclonal Antibody Immunofluorescence Immunocytochemistry Phagocytosis

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: GAS6 (Growth Arrest Specific gene 6) is a vitamin K-dependent ligand of the TAM (Tyro3, Axl and MerTK) RTK family. It has an N-terminal Gla domain containing multiple Asp gamma-carboxylation sites, followed by four EGF repeats and two C-terminal LG domains. Vitamin K mediates multiple gamma-carboxylations of glutamic acid residues in the GAS6 Gla domain. These modifications are required for GAS6 to to activate its receptor (1,2). The two C-terminal LG (SHBG) domains form a V-shaped structure and provide a direct binding site for receptor interaction. Among the TAM family members, GAS6 has high affinity for Axl and low affinity for Tyro3 and MerTK. Ligand/receptor interaction activates multiple downstream signaling pathways such as PI3K/AKT, STAT/SOCS, PLC/FAK, and Grb2/RAS, and promotes cell survival, proliferation, migration and differentiation (3,4). GAS6 has been implicated in cancer development and immune-related disorders (inflammation and multiple sclerosis), and as such has been identified as a potential therapeutic target (3-6).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Mer tyrosine kinase belongs to a receptor tyrosine kinase family with Axl and Tyro3. This family is characterized by a common NCAM (neural adhesion molecule)-related extracellular domain and a common ligand, GAS6 (growth arrest-specific protein 6). Mer protein has an apparent molecular weight of 170-210 kDa due to different glycosylation patterns generated in different cell types. Mer can be activated by dimerization and autophosphorylation through ligand binding or homophilic cell-cell interaction mediated by its NCAM-like motif (1). The downstream signaling components of activated Mer include PI3 kinase, PLCγ, and MAP kinase (2). Family members are prone to transcriptional regulation and carry out diverse functions including the regulation of cell adhesion, migration, phagocytosis, and survival (3). Mer regulates macrophage activation, promotes apoptotic cell engulfment, and supports platelet aggregation and clot stability in vivo (4). Investigators have found that overexpression of Mer may play a cooperative role in leukemogenesis and may be an effective target for biologically based leukemia/lymphoma therapy (5).

$260
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct immunofluorescence analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated CD31 (PECAM-1) (89C2) Mouse mAb #3528.
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: CD31 (Platelet Endothelial Cell Adhesion Molecule-1: PECAM-1), a member of the Ig superfamily of cell adhesion molecules, is expressed by circulating platelets, monocytes, neutrophils, some T cells, and endothelial cells and modulates cell adhesion, endothelial cell migration, and angiogenesis (1). CD31 is phosphorylated on Tyr686 at the cytoplasmic carboxy-terminal tail upon various stimuli (e.g. mechanical or oxidative stress), presumably by Src family members (2). The tyrosine phosphorylation mediates associations with a number of SH2 domain-containing binding partners such as PI3 kinase, SHIP, PLCγ, and SHP-2. Thus, CD31 serves as a scaffold for various signaling molecules (3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the ligand-activated nuclear receptor superfamily and functions as a transcriptional activator (1). PPARγ is preferentially expressed in adipocytes as well as in vascular smooth muscle cells and macrophage (2). Besides its role in mediating adipogenesis and lipid metabolism (2), PPARγ also modulates insulin sensitivity, cell proliferation and inflammation (3). PPARγ transcriptional activity is inhibited by MAP kinase phosphorylation of PPARγ at Ser84 (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the ligand-activated nuclear receptor superfamily and functions as a transcriptional activator (1). PPARγ is preferentially expressed in adipocytes as well as in vascular smooth muscle cells and macrophage (2). Besides its role in mediating adipogenesis and lipid metabolism (2), PPARγ also modulates insulin sensitivity, cell proliferation and inflammation (3). PPARγ transcriptional activity is inhibited by MAP kinase phosphorylation of PPARγ at Ser84 (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Proteins in the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex are integral membrane proteins involved in vesicle transport and membrane fusion that pair vesicular SNAREs (v-SNAREs) with cognate target SNARE (t-SNARE) proteins (reviewed in 1,2). Vesicle-associated membrane protein 7 (VAMP7), or tetanus neurotoxin-insensitive VAMP (TI-VAMP), is a widely expressed v-SNARE involved in exocytosis of granules and synaptic vesicles in various cell types, membrane remodeling, neurite outgrowth, lysosomal secretion, and autophagosome maturation (3). Activity of VAMP7 can be regulated by c-Src-mediated tyrosine phosphorylation, which activates VAMP7-mediated exocytosis (4). VAMP7 activity can also be regulated through interaction with the guanine nucleotide exchange factor Varp (5,6). Several research studies indicate that VAMP7 plays an important role in neurite outgrowth as well as potential neurological activities, including anxiety (7-9). VAMP7 also appears to have a key role in T-cell activation by facilitating the recruitment of vesicular Lat to the immunological synapse (10). The VAMP7 protein interacts with ATG16L, a component of the ATG5-ATG12 complex, and regulates autophagosome maturation through homotypic fusion of ATG16L1 vesicles (11).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Nonmuscle myosin is an actin-based motor protein essential to cell motility, cell division, migration, adhesion, and polarity. The holoenzyme consists of two identical heavy chains and two sets of light chains. The light chains (MLCs) regulate myosin II activity and stability. The heavy chains (NMHCs) are encoded by three genes, MYH9, MYH10, and MYH14, which generate three different nonmuscle myosin II isoforms, IIa, IIb, and IIc, respectively (reviewed in 1). While all three isoforms perform the same enzymatic tasks, binding to and contracting actin filaments coupled to ATP hydrolysis, their cellular functions do not appear to be redundant and they have different subcellular distributions (2-5). The carboxy-terminal tail domain of myosin II is important in isoform-specific subcellular localization (6). Research studies have shown that phosphorylation of myosin IIa at Ser1943 contributes to the regulation of breast cancer cell migration (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: TMS1 (target of methylation-induced silencing)/ASC (apoptosis-associated speck-like protein containing a CARD), also referred to as PYCARD and CARD5, is a 22-kDa pro-apoptotic protein containing an N-terminal pyrin domain (PYD) and a C-terminal caspase recruitment domain (CARD) (1-2). The ASC/TMS1 gene was originally found to be aberrantly methylated and silenced in breast cancer cells (2), and has since been found to be silenced in a number of other cancers, including ovarian cancer (3), glioblastoma (4), melanoma (5), gastric cancer (6), lung cancer (7), and prostate cancer (8). Expression of ASC/TMS1 can be induced by pro-apoptotic/inflammatory stimuli (9). During apoptosis ASC/TMS1 is re-distributed from the cytosol to the mitochondria and associates with mitochondrial Bax to trigger cytochrome c release and subsequent apoptosis (10). ASC/TMS1 has also been found to be a critical component of inflammatory signaling where it associates with and activates caspase-1 in response to pro-inflammatory signals (11).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Interleukin-1β (IL-1β), one of the major caspase-1 targets, is a multifunctional cytokine that is involved in a host of immune and proinflammatory responses (1). It is produced primarily by activated monocytes and macrophages. It signals through various adaptor proteins and kinases that lead to activation of numerous downstream targets (2-6). Human IL-1β is synthesized as a 31 kDa precursor. To gain activity, the precursor must be cleaved by caspase-1 between Asp116 and Ala117 to yield a 17 kDa mature form (7,8). Detection of the 17 kDa mature form of IL-1β is a good indicator of caspase-1 activity.

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct immunofluorescent analysis in mouse cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated ASC (D2W8U) Rabbit mAb (Mouse Specific) #67824.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: TMS1 (target of methylation-induced silencing)/ASC (apoptosis-associated speck-like protein containing a CARD), also referred to as PYCARD and CARD5, is a 22-kDa pro-apoptotic protein containing an N-terminal pyrin domain (PYD) and a C-terminal caspase recruitment domain (CARD) (1-2). The ASC/TMS1 gene was originally found to be aberrantly methylated and silenced in breast cancer cells (2), and has since been found to be silenced in a number of other cancers, including ovarian cancer (3), glioblastoma (4), melanoma (5), gastric cancer (6), lung cancer (7), and prostate cancer (8). Expression of ASC/TMS1 can be induced by pro-apoptotic/inflammatory stimuli (9). During apoptosis ASC/TMS1 is re-distributed from the cytosol to the mitochondria and associates with mitochondrial Bax to trigger cytochrome c release and subsequent apoptosis (10). ASC/TMS1 has also been found to be a critical component of inflammatory signaling where it associates with and activates caspase-1 in response to pro-inflammatory signals (11).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: TNF-α, the prototypical member of the TNF protein superfamily, is a homotrimeric type-II membrane protein (1,2). Membrane-bound TNF-α is cleaved by the metalloprotease TACE/ADAM17 to generate a soluble homotrimer (2). Both membrane and soluble forms of TNF-α are biologically active. TNF-α is produced by a variety of immune cells including T cells, B cells, NK cells, and macrophages (1). Cellular response to TNF-α is mediated through interaction with receptors TNF-R1 and TNF-R2 and results in activation of pathways that favor both cell survival and apoptosis depending on the cell type and biological context. Activation of kinase pathways (including JNK, Erk1/2, p38 MAPK, and NF-κB) promotes the survival of cells, while TNF-α-mediated activation of caspase-8 leads to programmed cell death (1,2). TNF-α plays a key regulatory role in inflammation and host defense against bacterial infection, notably Mycobacterium tuberculosis (3).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Calcium is a universal signaling molecule involved in many cellular functions such as cell motility, metabolism, protein modification, protein folding, and apoptosis. Calcium is stored in the endoplasmic reticulum (ER), where it is buffered by calcium binding chaperones such as calnexin and calreticulin, and is released via the IP3 Receptor channel (1). Calreticulin also functions as an ER chaperone that ensures proper folding and quality control of newly synthesized glycoproteins. As such, calreticulin presumably does not alter protein folding but regulates proper timing for efficient folding and subunit assembly. Furthermore, calreticulin retains proteins in non-native conformation within the ER and targets them for degradation (2,3).

$121
2 western blots
20 µl
$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct immunofluorescence analysis in mouse cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated ASC (D2W8U) Rabbit mAb (Mouse Specific) #67824.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: TMS1 (target of methylation-induced silencing)/ASC (apoptosis-associated speck-like protein containing a CARD), also referred to as PYCARD and CARD5, is a 22-kDa pro-apoptotic protein containing an N-terminal pyrin domain (PYD) and a C-terminal caspase recruitment domain (CARD) (1-2). The ASC/TMS1 gene was originally found to be aberrantly methylated and silenced in breast cancer cells (2), and has since been found to be silenced in a number of other cancers, including ovarian cancer (3), glioblastoma (4), melanoma (5), gastric cancer (6), lung cancer (7), and prostate cancer (8). Expression of ASC/TMS1 can be induced by pro-apoptotic/inflammatory stimuli (9). During apoptosis ASC/TMS1 is re-distributed from the cytosol to the mitochondria and associates with mitochondrial Bax to trigger cytochrome c release and subsequent apoptosis (10). ASC/TMS1 has also been found to be a critical component of inflammatory signaling where it associates with and activates caspase-1 in response to pro-inflammatory signals (11).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Calreticulin (D3E6) XP® Rabbit mAb #12238.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Calcium is a universal signaling molecule involved in many cellular functions such as cell motility, metabolism, protein modification, protein folding, and apoptosis. Calcium is stored in the endoplasmic reticulum (ER), where it is buffered by calcium binding chaperones such as calnexin and calreticulin, and is released via the IP3 Receptor channel (1). Calreticulin also functions as an ER chaperone that ensures proper folding and quality control of newly synthesized glycoproteins. As such, calreticulin presumably does not alter protein folding but regulates proper timing for efficient folding and subunit assembly. Furthermore, calreticulin retains proteins in non-native conformation within the ER and targets them for degradation (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Rab27 is a member of the Ras superfamily of small Rab GTPases implicated in exocytosis (1-2). The protein is localized in secretory lysosomes, such as melanosomes in melanocyte or lytic granules in cytotoxic T cells to control exosome secretion pathway (3-5). Rab27 has two isoforms, Rab27a and Rab27b. Rab27a colocalizes with part of CD63 staining vesicles, and Rab27b shows perinuclear distribution. Target knock out studies indicate that the isoforms control different steps of the exosome secretion pathway (6). Rab27a interacts with a wide range of effectors and is involved in multiple steps of exocytosis depending on the effector it associated with and the cell type that is involved (1,2). Rab27a has been shown to be an important player in leukocyte function, cancer metastasis and invasion, and insulin secretion (7-11)

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Rab27 is a member of the Ras superfamily of small Rab GTPases implicated in exocytosis (1-2). The protein is localized in secretory lysosomes, such as melanosomes in melanocyte or lytic granules in cytotoxic T cells to control exosome secretion pathway (3-5). Rab27 has two isoforms, Rab27a and Rab27b. Rab27a colocalizes with part of CD63 staining vesicles, and Rab27b shows perinuclear distribution. Target knock out studies indicate that the isoforms control different steps of the exosome secretion pathway (6). Rab27a interacts with a wide range of effectors and is involved in multiple steps of exocytosis depending on the effector it associated with and the cell type that is involved (1,2). Rab27a has been shown to be an important player in leukocyte function, cancer metastasis and invasion, and insulin secretion (7-11)

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Neutrophil elastase is hematopoietic serine protease that belongs to the chymotrypsin superfamily and plays a critical role in the innate immune function of mature neutrophils and monocytes (1,2). Neutrophil elastase is actively synthesized as an inactive zymogen in myelocytic precursor cells of the bone marrow, which then undergoes activation by limited proteolysis and sorting to primary (azurophil) storage granules of mature neutrophil granulocytes for regulated release (3,4). Research studies have shown that neutrophils play a significant role in mediating the inflammatory response through the release of neutrophil elastase, which activates pro-inflammatory cytokines and degrades components of the extracellular matrix and Gram-negative bacteria (5). Mutations in the gene encoding neutrophil elastase, ELA2, have been implicated in hematological diseases such as cyclic and severe congenital neutropenia, which is characterized by defects in promyelocyte maturation (6,7).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells and for immunofluorescent analysis in human and mouse cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Calreticulin (D3E6) XP® Rabbit mAb #12238.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Calcium is a universal signaling molecule involved in many cellular functions such as cell motility, metabolism, protein modification, protein folding, and apoptosis. Calcium is stored in the endoplasmic reticulum (ER), where it is buffered by calcium binding chaperones such as calnexin and calreticulin, and is released via the IP3 Receptor channel (1). Calreticulin also functions as an ER chaperone that ensures proper folding and quality control of newly synthesized glycoproteins. As such, calreticulin presumably does not alter protein folding but regulates proper timing for efficient folding and subunit assembly. Furthermore, calreticulin retains proteins in non-native conformation within the ER and targets them for degradation (2,3).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 555 fluorescent dye and tested in-house for direct flow cytometric and immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Neutrophil Elastase (E9C9L) XP® Rabbit mAb #89241.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Neutrophil elastase is hematopoietic serine protease that belongs to the chymotrypsin superfamily and plays a critical role in the innate immune function of mature neutrophils and monocytes (1,2). Neutrophil elastase is actively synthesized as an inactive zymogen in myelocytic precursor cells of the bone marrow, which then undergoes activation by limited proteolysis and sorting to primary (azurophil) storage granules of mature neutrophil granulocytes for regulated release (3,4). Research studies have shown that neutrophils play a significant role in mediating the inflammatory response through the release of neutrophil elastase, which activates pro-inflammatory cytokines and degrades components of the extracellular matrix and Gram-negative bacteria (5). Mutations in the gene encoding neutrophil elastase, ELA2, have been implicated in hematological diseases such as cyclic and severe congenital neutropenia, which is characterized by defects in promyelocyte maturation (6,7).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for direct flow cytometric and immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Neutrophil Elastase (E9C9L) XP® Rabbit mAb #89241.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Neutrophil elastase is hematopoietic serine protease that belongs to the chymotrypsin superfamily and plays a critical role in the innate immune function of mature neutrophils and monocytes (1,2). Neutrophil elastase is actively synthesized as an inactive zymogen in myelocytic precursor cells of the bone marrow, which then undergoes activation by limited proteolysis and sorting to primary (azurophil) storage granules of mature neutrophil granulocytes for regulated release (3,4). Research studies have shown that neutrophils play a significant role in mediating the inflammatory response through the release of neutrophil elastase, which activates pro-inflammatory cytokines and degrades components of the extracellular matrix and Gram-negative bacteria (5). Mutations in the gene encoding neutrophil elastase, ELA2, have been implicated in hematological diseases such as cyclic and severe congenital neutropenia, which is characterized by defects in promyelocyte maturation (6,7).