Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Immunofluorescence Paraffin Cell Adhesion

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey

Application Methods: Immunofluorescence (Paraffin), Immunohistochemistry (Paraffin), Western Blotting

Background: Amyloid β (Aβ) precursor protein (APP) is a 100-140 kDa transmembrane glycoprotein that exists as several isoforms (1). The amino acid sequence of APP contains the amyloid domain, which can be released by a two-step proteolytic cleavage (1). The extracellular deposition and accumulation of the released Aβ fragments form the main components of amyloid plaques in Alzheimer's disease (1). APP can be phosphorylated at several sites, which may affect the proteolytic processing and secretion of this protein (2-5). Phosphorylation at Thr668 (a position corresponding to the APP695 isoform) by cyclin-dependent kinase is cell-cycle dependent and peaks during G2/M phase (4). APP phosphorylated at Thr668 exists in adult rat brain and correlates with cultured neuronal differentiation (5,6).

$388
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunofluorescence (Paraffin), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The epidermal growth factor (EGF) receptor is a 170 kDa transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Research studies have shown that somatic mutations in the tyrosine kinase domain of EGF receptor (EGFR) are present in a subset of lung adenocarinomas that respond to EGFR inhibitors, such as gefinitib and erlotinib (1-3). Two types of mutations account for approximately 90% of mutated cases: a specific point mutation, L858R, that occurs in exon 21 and short in-frame deletions in exon 19 (4,5). The most frequent exon 19 deletion is E746-A750, accounting for 90% of lesions at this site, although some rare variants occur.

$380
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunofluorescence (Paraffin), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The epidermal growth factor (EGF) receptor is a 170 kDa transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Research studies have shown that somatic mutations in the tyrosine kinase domain of EGF receptor (EGFR) are present in a subset of lung adenocarinomas that respond to EGFR inhibitors, such as gefinitib and erlotinib (1-3). Two types of mutations account for approximately 90% of mutated cases: a specific point mutation, L858R, that occurs in exon 21 and short in-frame deletions in exon 19 (4,5). The most frequent exon 19 deletion is E746-A750, accounting for 90% of lesions at this site, although some rare variants occur.

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Paraffin), Immunoprecipitation, Western Blotting

Background: Amyloid β (Aβ) precursor protein (APP) is a 100-140 kDa transmembrane glycoprotein that exists as several isoforms (1). The amino acid sequence of APP contains the amyloid domain, which can be released by a two-step proteolytic cleavage (1). The extracellular deposition and accumulation of the released Aβ fragments form the main components of amyloid plaques in Alzheimer's disease (1). APP can be phosphorylated at several sites, which may affect the proteolytic processing and secretion of this protein (2-5). Phosphorylation at Thr668 (a position corresponding to the APP695 isoform) by cyclin-dependent kinase is cell-cycle dependent and peaks during G2/M phase (4). APP phosphorylated at Thr668 exists in adult rat brain and correlates with cultured neuronal differentiation (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: LIM-containing lipoma-preferred partner (LPP) belongs to the zyxin family, members of which include LIMD1, ajuba, trip6 and zyxin. Three LIM domains at the carboxy-terminus characterize this family of proteins. Zyxin family members associate with the actin cytoskeleton and are components of both the cell-cell junction adhesive complex and the integrin-mediated adhesive complex (1). They shuttle in and out of the nucleus where they may function in transcriptional activation (1).LPP binding partners at cell-cell contacts include the actin regulator α-actinin (2) and the human tumor suppressor scrib which regulates cell migration and polarity (3).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, IHC-Leica® Bond™, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: TNFRSF18, also known as glucocorticoid-induced tumor necrosis factor-receptor (TNFR)-related protein (GITR) and activation-inducible TNFR family receptor, encodes a type 1 membrane protein of the TNF-receptor superfamily (1). Three alternatively spliced transcript variants encoding distinct isoforms have been reported (2). GITR is an immune cell co-stimulatory receptor expressed constitutively at high levels on CD4+CD25+ T regulatory cells (Tregs), at low levels on naive and memory T cells, and is induced upon T cell activation (3-5). Studies show GITR can also be induced on NK cells, macrophages, and DCs (3, 4, 6). Although GITR does not have intrinsic enzymatic activity, TNFSF18 (also known as GITRL) expressed on antigen presenting cells binds to GITR resulting in recruitment of TNFR-associated factor family members and activation of the NF-kappa-B pathway in T cells (7). GITR ligation has been shown to play a role in CD8+ T cell activation, cytoxicity, and memory T cell survival (8-10). In the thymus, GITR is thought to play a key role in dominant immunological self-tolerance through thymic Treg differentiation and expansion (11). Of note, GITR ligation inhibits Treg suppressive function (12-13) and promotes effector T cell resistance to Treg suppression (14-15). Due to the combined effects on both Treg suppression and effector cell activation, GITR represents a unique opportunity for immunotherapeutic intervention in cancer (16).

$260
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct immunofluorescence analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated CD31 (PECAM-1) (89C2) Mouse mAb #3528.
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: CD31 (Platelet Endothelial Cell Adhesion Molecule-1: PECAM-1), a member of the Ig superfamily of cell adhesion molecules, is expressed by circulating platelets, monocytes, neutrophils, some T cells, and endothelial cells and modulates cell adhesion, endothelial cell migration, and angiogenesis (1). CD31 is phosphorylated on Tyr686 at the cytoplasmic carboxy-terminal tail upon various stimuli (e.g. mechanical or oxidative stress), presumably by Src family members (2). The tyrosine phosphorylation mediates associations with a number of SH2 domain-containing binding partners such as PI3 kinase, SHIP, PLCγ, and SHP-2. Thus, CD31 serves as a scaffold for various signaling molecules (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Carcinoembryonic antigen (CEA), also known as CD66e or CEACAM5, is a 180-200 kDa cell surface glycoprotein whose expression is elevated in intestinal carcinomas and other tumors. CEA mediates cell adhesion, though little more is known about its biological activity. Expression of CEA is correlated with tumerogenicity (1), and it has been shown to play a role in cell migration, adhesion and invasion in culture cells, as well as in metastasis in vivo (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Mucins represent a family of glycoproteins characterized by repeat domains and dense O-glycosylation (1). MUC1 (or mucin 1) is aberrantly overexpressed in most human carcinomas. Increased expression of MUC1 in carcinomas reduces cell-cell and cell-ECM interactions. MUC1 is cleaved proteolytically, and the large ectodomain can remain associated with the small 25 kDa carboxy-terminal domain that contains a transmembrane segment and a 72-residue cytoplasmic tail (1). MUC1 interacts with ErbB family receptors and potentiates ERK1/2 activation (2). MUC1 also interacts with β-catenin, which is regulated by GSK-3β, PKCγ, and Src through phosphorylation at Ser44, Thr41, and Tyr46 of the MUC1 cytoplasmic tail (3-5). Overexpression of MUC1 potentiates transformation (6) and attenuates stress-induced apoptosis through the Akt or p53 pathways (7,8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: TRA-1-60 and TRA-1-81 antibodies detect antigens present on the surface of human stem, teratocarcinoma, and embryonic germ cells (1). TRA-1-60(S) reacts with a neuraminidase sensitive epitope of a proteoglycan (2,3), while TRA-1-81 reacts with a neuraminidase insensitive epitope on the same antigen. Recently this antigen has been proposed to be a form of the protein podocalyxin (4). TRA-1-60 is also detected in the serum of patients with germ cell tumors (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: SHP-substrate 1 (SHPS1, SIRPα) is a single-pass membrane protein and member of both the immunoglobulin superfamily and the signal regulatory protein (SIRP) family. Following growth hormone stimulation or integrin binding, SHPS1 is phosphorylated at several tyrosine residues within its cytoplasmic tail. These phosphorylation events promote association between SHPS1 and multiple signaling proteins, including SHP-1, SHP-2, Grb2 and Shc via their SH2 domains (1-4). Recruitment of SHP-1 and SHP-2 results in SHPS1 dephosphorylation and suppression of tyrosine kinase signaling (1-3,5). The tyrosine kinase JAK2 associates with SHPS1 via its carboxy terminus and phosphorylates SHPS1 in response to extracellular stimuli (5). Research studies show that Src associates with and may phosphorylate SHPS1 in response to insulin (4). In macrophages, SHPS1 can form a complex with the Src pathway adaptor protein SKAP2, Fyn-binding protein FYB, and the tyrosine kinase PYK2 (6). The SHPS1 extracellular domain contains at least three IgG-like domains that interact with CD47, a ubiquitously expressed, integrin-associated protein that acts as a repressive cue in both immune and neuronal cells (7,8). The interaction between CD47 and SHPS1 on opposing cells can inhibit cellular migration (9), promote "tethering" between macrophages and target cells during engulfment (10), facilitate self versus non-self recognition (11), and maintain immune homeostasis (12). SHPS1 plays a critical role in modulating the immune response and inflammation, and may play a role in neuronal development (13,14). The interaction between SHPS1 and CD47 may be an exploitable target in cancer therapy (15-17).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Olfactomedin-4 (OLFM4, hGC-1) is a member of the Olfactomedin family, a small group of extracellular proteins defined by the presence of a conserved "Olfactomedin domain" that is thought to facilitate protein-protein interactions (1). OLFM4 is a secreted glycoprotein, which forms disulfide bond-mediated oligomers, and is thought to mediate cell adhesion through its interactions with extracellular matrix proteins such as lectins (2). Human OLFM4 was first cloned from myeloid cells (3) and is expressed in a distinct subset of neutrophils, though the functional significance of this differential expression pattern remains unclear (4). Among normal tissues, the expression of OLFM4 protein is most abundant in intestinal crypts (5), where it has garnered attention as a possible marker of intestinal stem cells (6). Notably, OLFM4 expression is markedly increased in several tumor types, including colorectal, gastric, pancreas, lung, and breast (reviewed in [1]). Furthermore, research studies show that the expression levels of OLFM4 vary in relation to the severity and/or differentiation status of multiple tumor types (1, 6-8), leading to the suggestion that OLFM4 may have utility as a prognostic marker in some cancer patients (9).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Metastasis suppressor 1 (MTSS1) is a multi-functional scaffold protein that was initially discovered using a differential display technique that identified proteins missing from bladder cancer cell lines (1,2). MTSS1 (also known as Missing in Metastasis or MIM) is a cytoskeletal remodeling protein that contains a C-terminal WH2 actin-binding motif (1,3). Presence of an IMD (IRSp53/MIM homology) domain allows MTSS1 to induce F-actin bundling and filopodia formation in cells (4). MTSS1 binds to and activates Rac, a protein known to promote the formation of filopodia and lamellipodia (5). The receptor tyrosine phosphatase δ (PTPRD) is associated with MTSS1 and is required for MTSS1-dependent cytoskeletal change (6,7). MTSS1 is a SHH responsive gene that can help regulate GLI-dependent transcriptional activity (8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Transglutaminase 2 (TGM2) is a calcium-dependent enzyme that cross-links both cytosolic and extracellular matrix proteins by catalyzing the formation of bonds between lysine and glutamine residues (1). This bifunctional enzyme also has intrinsic GTPase activity, and it has been suggested that regulation of the transamidase activity might be regulated through a G-protein coupled receptor-signaling pathway (2). In cross-linking peptides, TGM2 helps to regulate cytoskeletal structure, cell migration, apoptosis and cell-matrix adhesion. In addition, the enzyme plays an important role in wound healing and the immune response (3). TGM2 has exhibited kinase activity in vitro, with insulin-like growth factor-binding protein-3 (IGFBP-3) as one possible substrate (4). This widely expressed protein is localized to the cytosol and nucleus, but has also been isolated from the cell surface and extracellular matrix (reviewed in 5). Because of its interaction with a number of different substrates, and its role in the response to injury, TGM2 has been associated with the pathology of a number of human disorders. It has long been recognized as the major autoantigen in celiac disease (6); altered TGM2 expression or activity may be associated with Alzheimer disease, Huntington disease, arteriosclerosis, diabetes, and numerous forms of cancer (reviewed in 7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: CD44 is a type I transmembrane glycoprotein that mediates cell-cell and cell-matrix interaction through its affinity for hyaluronic acid (HA) and possibly through other parts of the extracellular matrix (ECM). CD44 is highly polymorphic, possesses a number of alternative splice variants and undergoes extensive post-translational modifications (1,2). Increased surface levels of CD44 are characteristic of T cell activation, and expression of the protein is upregulated during the inflammatory response. Research studies have shown that interactions between CD44 and HER2 are linked to an increase in ovarian carcinoma cell growth (1-3). CD44 interacts with ezrin, radixin and moesin (ERM), linking the actin cytoskeleton to the plasma membrane and the ECM (4-6). CD44 is constitutively phosphorylated at Ser325 in resting cells. Activation of PKC results in phosphorylation of Ser291, dephosphorylation of Ser325, disassociation of ezrin from CD44, and directional motility (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Intercellular cell adhesion molecule-2 (CD102/ICAM-2) is a cell surface glycoprotein that belongs to the immunoglobulin superfamily (IgSF) of adhesion molecules. Like CD54/ICAM-1, CD102/ICAM-2 is a ligand that binds the leukocyte adhesion molecule LFA-1 (leukocyte function-associated antigen-1), which mediates intercellular interactions between immune cells and other cell types (1).Expression of CD102/ICAM-2 has been shown to affect angiogenesis (2), cellular radioresistance (3) and anti-tumor immune response (4). Along with CD54/ICAM-1, CD102/ICAM-2 mediates T cell crawling and diapedesis across the blood-brain barrier (5), as well as T cell migration across the bronchial epithelium (6). CD102/ICAM-2 interaction with the actin cytoskeleton through α-actinin has been shown to limit the mobility on neuroblastoma cells (7), and this effect is dependent on glycosylation of CD102/ICAM-2 (8).

$115
20 µl
$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Western Blotting

Background: Amyloid β (Aβ) precursor protein (APP) is a 100-140 kDa transmembrane glycoprotein that exists as several isoforms (1). The amino acid sequence of APP contains the amyloid domain, which can be released by a two-step proteolytic cleavage (1). The extracellular deposition and accumulation of the released Aβ fragments form the main components of amyloid plaques in Alzheimer's disease (1). APP can be phosphorylated at several sites, which may affect the proteolytic processing and secretion of this protein (2-5). Phosphorylation at Thr668 (a position corresponding to the APP695 isoform) by cyclin-dependent kinase is cell-cycle dependent and peaks during G2/M phase (4). APP phosphorylated at Thr668 exists in adult rat brain and correlates with cultured neuronal differentiation (5,6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Frozen), Immunohistochemistry (Paraffin), Western Blotting

Background: Cadherins are a superfamily of transmembrane glycoproteins that contain cadherin repeats of approximately 100 residues in their extracellular domain. Cadherins mediate calcium-dependent cell-cell adhesion and play critical roles in normal tissue development (1). The classic cadherin subfamily includes N-, P-, R-, B-, and E-cadherins, as well as about ten other members that are found in adherens junctions, a cellular structure near the apical surface of polarized epithelial cells. The cytoplasmic domain of classical cadherins interacts with β-catenin, γ-catenin (also called plakoglobin), and p120 catenin. β-catenin and γ-catenin associate with α-catenin, which links the cadherin-catenin complex to the actin cytoskeleton (1,2). While β- and γ-catenin play structural roles in the junctional complex, p120 regulates cadherin adhesive activity and trafficking (1-4). Investigators consider E-cadherin an active suppressor of invasion and growth of many epithelial cancers (1-3). Research studies indicate that cancer cells have upregulated N-cadherin in addition to loss of E-cadherin. This change in cadherin expression is called the "cadherin switch." N-cadherin cooperates with the FGF receptor, leading to overexpression of MMP-9 and cellular invasion (3). Research studies have shown that in endothelial cells, VE-cadherin signaling, expression, and localization correlate with vascular permeability and tumor angiogenesis (5,6). Investigators have also demonstrated that expression of P-cadherin, which is normally present in epithelial cells, is also altered in ovarian and other human cancers (7,8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Class 3 secreted semaphorin (Sema3A) is a chemorepellent that acts upon a wide variety of axons. As such, it induces a dramatic redistribution and depolymerization of actin filaments that results in growth cone collapse. Plexins are single pass, transmembrane signaling proteins encompassing Plexin A1, A2, A3 and A4. Plexins form a complex with neuropilin-1 and -2 and the cell adhesion protein L1 to form a functional semaphorin receptor (1,2). The GTPase Rnd1 binds to the cytoplasmic domain of Plexin A1 to trigger cytoskeletal collapse. In contrast, the GTPase RhoD blocks Rnd1-mediated Plexin A1 activation and repulsion of sympathetic axons by Sema3A (3).

$260
200 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: NCAM (neural cell adhesion molecule, CD56) is an adhesion glycoprotein with five extracellular immunoglobulin-like domains followed by two fibronectin type III repeats. Structural diversity is introduced by alternative splicing resulting in different cytoplasmic domains (1). NCAM mediates neuronal attachment, neurite extension and cell-cell interactions through homo and heterophilic interactions. PSA (polysialic acid) post-translationally modifies NCAM and increases the metastatic potential of small cell lung carcinoma, Wilms+ tumor, neuroblastoma and rhabdomyosarcoma (2). CD56 and CD16 are commonly used to identify NK cells although some cells with the T cell markers CD3 and CD4 also express CD56 (3).