20% off purchase of 3 or more products* | Learn More >>

Monoclonal Antibody Immunoprecipitation Nad Metabolic Process

Also showing Monoclonal Antibody Immunoprecipitation Nad Biosynthetic Process

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Nicotinamide phosphoribosyltransferase (NAMPT; also known as Pre-B cell-enhancing factor PBEF) catalyzes the synthesis of nicotinamide mononucleotide (NMN) from nicotinamide and 5-phosphoribosylpyrophosphate (PRPP), the rate-limiting step in the NAD biosynthesis pathway starting from nicotinamide (1,2). NAD biosynthesis mediated by NAMPT plays a critical role in glucose-stimulated insulin secretion in pancreatic beta cells (3). Both NAMPT inhibitors and activators have been sought for clinical applications (4,5). NAMPT has intra- and extracellular forms (iNAMPT and eNAMPT), and deacetylation of iNAMPT by SIRT1 promotes eNAMPT secretion through a nonclassical secretory pathway (3,6). eNAMPT, independent of its enzymatic activity, can induce epithelial-to-mesenchymal transition in mammary epithelial cells and promote monocyte differentiation into a tumor-supporting M2 macrophage (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Nicotinamide phosphoribosyltransferase (NAMPT; also known as Pre-B cell-enhancing factor PBEF) catalyzes the synthesis of nicotinamide mononucleotide (NMN) from nicotinamide and 5-phosphoribosylpyrophosphate (PRPP), the rate-limiting step in the NAD biosynthesis pathway starting from nicotinamide (1,2). NAD biosynthesis mediated by NAMPT plays a critical role in glucose-stimulated insulin secretion in pancreatic beta cells (3). Both NAMPT inhibitors and activators have been sought for clinical applications (4,5). NAMPT has intra- and extracellular forms (iNAMPT and eNAMPT), and deacetylation of iNAMPT by SIRT1 promotes eNAMPT secretion through a nonclassical secretory pathway (3,6). eNAMPT, independent of its enzymatic activity, can induce epithelial-to-mesenchymal transition in mammary epithelial cells and promote monocyte differentiation into a tumor-supporting M2 macrophage (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Nicotinamide mononucleotide adenylyl transferases (NMNATs) catalyze the reversible reaction of ATP with NaMN (nicotinic acid mononucleotide) or NMN (nicotinamide mononucleotide) to produce NaAD (nicotinic acid adenine dinucleotide) or NAD (nicotinamide adenine dinucleotide). NAD is an essential cofactor or substrates for many enzymes like PARP1 and Sirt1 that regulate diverse cellular processes including oxidative reactions and transcription. NMNATs maintain NAD levels for internal homeostasis (1,2). NMNAT1 is localized to the nucleus and loss-of-function mutant in mice causes embryonic lethality (3). In humans, several different NMNAT1 mutations are associated with Leber congenital amaurosis (LCA), the most common cause of inherited childhood blindness (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: P2X purinergic receptors are ATP-gated ion channels involved in physiological processes that include inflammation, afferent sensory signaling, and sympathetic motor nerve activity. Seven different vertebrate genes (P2RX1-P2RX7) encode for individual receptor protein subunits (1). All P2X subunit proteins share similar protein domain structure, but can differ in overall protein length from 384 to 595 amino acids. Each P2X subunit is composed of amino- and carboxy-terminal intracellular domains, two transmembrane domains, and a large extracellular loop that contains ten evenly spaced cysteines and multiple glycosylation sites (2). P2X receptors are found in a variety of cell types and tissues, including central and peripheral nervous system neurons and glial cells, autonomic and sensory neurons, bone, muscle, and hematopoietic tissues (1).