Dropping with the temps: Cool deals on CST mAbs | Learn More >>

Monoclonal Antibody Immunoprecipitation Protein Serinethreonine Kinase Activity

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: PASK is a serine/threonine kinase that contains two PAS (Per-Arnt-Sim) domains (1). Its kinase activity is up-regulated by autophosphorylation of the activation loop within its catalytic domain and is inhibited in cis by one of the PAS domains (1). Studies found that the yeast homolog of PASK phosphorylates and inhibits two enzymes required for glycogen biosynthesis: UDP-glucose pyrophosphorylase and glycogen synthase, resulting in the decrease of carbohydrate storage (2). Further studies showed that increased glucose levels activate PASK activity and enhance its expression in pancreatic β-cells (3). PASK is essential for the glucose-stimulated expression of preproinsulin and Pdx1, suggesting its role in the regulation of genes involved in pancreatic β-cell functions (3). PASK was shown to be critical for glucose-stimulated insulin secretion in pancreatic β-cells (4). The absence of PASK also protects animals from obesity and insulin resistance when they are fed a high-fat diet (4). These findings suggest that PASK functions as an important metabolic sensor in various cells (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Salt-inducible kinase 1 (SIK1) was originally identified as a serine/threonine kinase from adrenocortical tissues of rats on a high salt diet (1). SIK1 is a SNF1/AMPK family kinase capable of autophosphorylation (1). SIK2 is an isoform of SIK1 and is specifically expressed in adipose tissues where it is induced during adipocyte differentiation (2). Studies suggest that SIK2 can phosphorylate human insulin receptor substrate (IRS-1) at Ser794. Along with evidence that SIK2 expression and activity are increased in white adipocytes of diabetic mice, this finding suggests a possible role for SIK2 in regulating insulin signaling in adipocytes and in the development of insulin resistance (2,3). Insulin triggers Akt2-mediated phosphorylation of SIK2 at Ser358 and the resultant kinase activation during post-fasting feeding (4). The activated SIK2 then induces the phosphorylation of Torc2 at Ser171 resulting in translocation of this transcriptional coactivator from the nucleus to cytoplasm where it is degraded through the ubiquitin pathway, leading to inhibition of gluconeogenic gene expression (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Brain-specific kinase 1 (BRSK1; SAD-B) and Brain-specific kinase 2 (BRSK2; SAD-A) are serine/threonine kinases closely related to AMPK. LKB1 phosphorylates Thr189 in the T-loop of BRSK1 and Thr174 in the T-loop of BRSK2, resulting in activation of the kinases (1). BRSK1 localizes to synaptic vesicles in the hippocampus and cerebellum, together with the active zone proteins Bassoon and CAST, and BRSK1 phoshorylates the active zone protein RIM1 (2). An alternatively spliced from of BRSK1 displays unique activity during the cell cycle, phosphorylating Ser131 of γ-tubulin and controling centrosome duplication (3). Neuronal polarization, including axon formation, is fundamental for normal brain development. BRSK1 -/- and BRSK2 -/- mice have defects in neuronal polarity and impaired corticogenesis (4). Knockdown of BRSK1 and BRSK2 in vitro diminishes axonal growth (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Brain-specific kinase 1 (BRSK1; SAD-B) and Brain-specific kinase 2 (BRSK2; SAD-A) are serine/threonine kinases closely related to AMPK. LKB1 phosphorylates Thr189 in the T-loop of BRSK1 and Thr174 in the T-loop of BRSK2, resulting in activation of the kinases (1). BRSK1 localizes to synaptic vesicles in the hippocampus and cerebellum, together with the active zone proteins Bassoon and CAST, and BRSK1 phoshorylates the active zone protein RIM1 (2). An alternatively spliced from of BRSK1 displays unique activity during the cell cycle, phosphorylating Ser131 of γ-tubulin and controling centrosome duplication (3). Neuronal polarization, including axon formation, is fundamental for normal brain development. BRSK1 -/- and BRSK2 -/- mice have defects in neuronal polarity and impaired corticogenesis (4). Knockdown of BRSK1 and BRSK2 in vitro diminishes axonal growth (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Two related serine/threonine kinases, UNC-51-like kinase 1 and 2 (ULK1, ULK2), were discovered as mammalian homologs of the C. elegans gene UNC-51 in which mutants exhibited abnormal axonal extension and growth (1-4). Both proteins are widely expressed and contain an amino-terminal kinase domain followed by a central proline/serine rich domain and a highly conserved carboxy-terminal domain. The roles of ULK1 and ULK2 in axon growth have been linked to studies showing that the kinases are localized to neuronal growth cones and are involved in endocytosis of critical growth factors, such as NGF (5). Yeast two-hybrid studies found ULK1/2 associated with modulators of the endocytic pathway, SynGAP and syntenin (6). Structural similarity of ULK1/2 has also been recognized with the yeast autophagy protein Atg1/Apg1 (7). Knockdown experiments using siRNA demonstrated that ULK1 is essential for autophagy (8), a catabolic process for the degradation of bulk cytoplasmic contents (9,10). It appears that Atg1/ULK1 can act as a convergence point for multiple signals that control autophagy (11), and can bind to several autophagy-related (Atg) proteins, regulating phosphorylation states and protein trafficking (12-16).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Two related serine/threonine kinases, UNC-51-like kinase 1 and 2 (ULK1, ULK2), were discovered as mammalian homologs of the C. elegans gene UNC-51 in which mutants exhibited abnormal axonal extension and growth (1-4). Both proteins are widely expressed and contain an amino-terminal kinase domain followed by a central proline/serine rich domain and a highly conserved carboxy-terminal domain. The roles of ULK1 and ULK2 in axon growth have been linked to studies showing that the kinases are localized to neuronal growth cones and are involved in endocytosis of critical growth factors, such as NGF (5). Yeast two-hybrid studies found ULK1/2 associated with modulators of the endocytic pathway, SynGAP and syntenin (6). Structural similarity of ULK1/2 has also been recognized with the yeast autophagy protein Atg1/Apg1 (7). Knockdown experiments using siRNA demonstrated that ULK1 is essential for autophagy (8), a catabolic process for the degradation of bulk cytoplasmic contents (9,10). It appears that Atg1/ULK1 can act as a convergence point for multiple signals that control autophagy (11), and can bind to several autophagy-related (Atg) proteins, regulating phosphorylation states and protein trafficking (12-16).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: At least 4 distinct polo-like kinases exist in mammalian cells: PLK1, PLK2, PLK3 and PLK4/SAK (1). Like the other PLK family members, PLK3 contains an amino-terminal catalytic domain and a conserved carboxy-terminal domain termed the Polo box (2). PLK3, also called proliferation-related kinase (Prk) (3), was originally described as a fibroblast growth factor (FGF)-inducible kinase (Fnk) and identified as an immediate-early response gene responsive to FGF-1 and other mitogens (4). PLK3 is a cytokine-inducible serine/threonine kinase whose protein expression is cell cycle regulated. Though its expression is found primarily in G1 phase of the cell cycle, PLK3 is detected in G0 and in late telophase prior to cytokinesis (5). Like the other PLK family members, PLK3 functions mainly as a regulator of the cell cycle. Specifically, PLK3 is required for entry into S phase and is a critical regulator of G1 events, as indicated by RNAi-induced PLK3-depleted cells (2). PLK3 is also involved in the regulation of DNA damage response via phosphorylation of p53 on Ser20 (6). PLK3 may act as a tumor suppressor as Plk3-deficient mice develop spontaneous tumors in various organs (7). Unlike PLK1, PLK3 expression is down regulated in cancers including lung (3), head and neck (8), and colon (9).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Pim proteins (Pim-1, Pim-2 and Pim-3) are oncogene-encoded serine/threonine kinases (1). Pim-1, a serine/threonine kinase highly expressed in hematopoietic cells, plays a critical role in the transduction of mitogenic signals and is rapidly induced by a variety of growth factors and cytokines (1-4). Pim-1 cooperates with c-Myc in lymphoid cell transformation and protects cells from growth factor withdrawal and genotoxic stress-induced apoptosis (5,6). Pim-1 also enhances the transcriptional activity of c-Myb through direct phosphorylation within the c-Myb DNA binding domain as well as phosphorylation of the transcriptional coactivator p100 (7,8). Hypermutations of the Pim-1 gene are found in B-cell diffuse large cell lymphomas (9). Phosphorylation of Pim-1 at Tyr218 by Etk occurs following IL-6 stimulation and correlates with an increase in Pim-1 activity (10). Various Pim substrates have been identified; Bad is phosphorylated by both Pim-1 and Pim-2 at Ser112 and this phosphorylation reverses Bad-induced cell apoptosis (11,12).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Two related serine/threonine kinases, UNC-51-like kinase 1 and 2 (ULK1, ULK2), were discovered as mammalian homologs of the C. elegans gene UNC-51 in which mutants exhibited abnormal axonal extension and growth (1-4). Both proteins are widely expressed and contain an amino-terminal kinase domain followed by a central proline/serine rich domain and a highly conserved carboxy-terminal domain. The roles of ULK1 and ULK2 in axon growth have been linked to studies showing that the kinases are localized to neuronal growth cones and are involved in endocytosis of critical growth factors, such as NGF (5). Yeast two-hybrid studies found ULK1/2 associated with modulators of the endocytic pathway, SynGAP and syntenin (6). Structural similarity of ULK1/2 has also been recognized with the yeast autophagy protein Atg1/Apg1 (7). Knockdown experiments using siRNA demonstrated that ULK1 is essential for autophagy (8), a catabolic process for the degradation of bulk cytoplasmic contents (9,10). It appears that Atg1/ULK1 can act as a convergence point for multiple signals that control autophagy (11), and can bind to several autophagy-related (Atg) proteins, regulating phosphorylation states and protein trafficking (12-16).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Immunoprecipitation, Western Blotting

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Two related serine/threonine kinases, UNC-51-like kinase 1 and 2 (ULK1, ULK2), were discovered as mammalian homologs of the C. elegans gene UNC-51 in which mutants exhibited abnormal axonal extension and growth (1-4). Both proteins are widely expressed and contain an amino-terminal kinase domain followed by a central proline/serine rich domain and a highly conserved carboxy-terminal domain. The roles of ULK1 and ULK2 in axon growth have been linked to studies showing that the kinases are localized to neuronal growth cones and are involved in endocytosis of critical growth factors, such as NGF (5). Yeast two-hybrid studies found ULK1/2 associated with modulators of the endocytic pathway, SynGAP and syntenin (6). Structural similarity of ULK1/2 has also been recognized with the yeast autophagy protein Atg1/Apg1 (7). Knockdown experiments using siRNA demonstrated that ULK1 is essential for autophagy (8), a catabolic process for the degradation of bulk cytoplasmic contents (9,10). It appears that Atg1/ULK1 can act as a convergence point for multiple signals that control autophagy (11), and can bind to several autophagy-related (Atg) proteins, regulating phosphorylation states and protein trafficking (12-16).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Aurora A (AIK) is a cell cycle-regulated Ser/Thr protein kinase that is overexpressed in many tumor cell lines (1-3). Phosphorylation of Aurora A at Thr288 within the kinase activation loop results in a significant increase in its activity and may target the protein for proteasomal degradation during mitosis (4). The closely-related kinase Aurora B (AIM1) has been implicated in multiple mitotic events (5), and siRNA silencing of Aurora B expression results in reduced histone H3 phosphorylation, aberrant chromosome alignment/segregation, and altered survivin localization (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: DRAK2 (DAP kinase related apoptosis inducing protein kinase 2) is a member of the novel DAP (death associated protein) pro-apoptotic kinase family (1). Overexpression of DRAK2 in NIH/3T3 cells induces morphological changes associated with apoptosis, which are likely to occur in a p53-dependent manner (1,2). DRAK2 is preferentially expressed in lymphoid tissues and regulates the TCR activation threshold during thymocyte selection (3). Indeed, T cells from DRAK2(-/-) mice exhibit enhanced sensitivity to T cell receptor-mediated stimulation and have a reduced requirement for co-stimulation (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Serum and glucocorticoid-inducible kinase (SGK) is a serine/threonine kinase closely related to Akt (1). SGK is rapidly induced in response to a variety of stimuli, including serum, glucocorticoid, follicle stimulating hormone, osmotic shock, and mineralocorticoids. SGK activation can be accomplished via HGF PI3K-dependent pathways and by integrin-mediated PI3K-independent pathways (2,3). Induction and activation of SGK has been implicated in activating the modulation of anti-apoptotic and cell cycle regulation (4-6). SGK also plays an important role in activating certain potassium, sodium, and chloride channels, suggesting its involvement in the regulation of processes such as cell survival, neuronal excitability, and renal sodium excretion (2). SGK is negatively regulated by ubiquitination and proteasome degradation (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: At least five distinct polo-like kinases exist in mammalian cells: PLK1, PLK2, PLK3, PLK4/SAK, and the non-catalytic PLK5 protein (1). The p53-induced PLK2 functions in centriole duplication, as well as at spindle and S phase checkpoints (3-5). Research studies show that PLK2 expression is related to chemosensitivity in ovarian cancer. Downregulation of PLK2 expression in chemosensitive ovarian cancer cells is associated with a greater chance of relapse in patients following specific treatment regimens (6). PLK2 can phosphorylate α-synuclein at Ser129, which is a site shown to be involved in diseases of the central nervous system (7,8). Polo-like kinase 2 also phosphorylates GEFs and GAPs, regulating Ras and Rap small GTPase function in neurons (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Mammalian sterile-20-like (MST) kinases are upstream regulators of mitogen-activated protein kinase (MAPK) signaling pathways that regulate multiple cellular processes, including proliferation, apoptosis, migration, and cytoskeletal rearrangement (1). This family of serine/threonine kinases includes MST1 (STK4) and MST2 (STK3), two functionally related proteins with conserved amino-terminal kinase domains and carboxy-terminal regulatory domains that contain nuclear export signals (1-3). During apoptosis, caspase-mediated cleavage of MST1/2 removes the inhibitory regulatory domain, triggering autophosphorylation and activation of the kinase domain, which is translocated to the nucleus. Nuclear translocation of the active kinase induces chromatin condensation and other events associated with apoptotic progression (4).Research studies indicate that MST1/2 are orthologous to Drosophila Hippo (Hpo), one of the core regulatory proteins in the Hippo signaling pathway. This evolutionarily conserved program controls tissue growth and organ size by regulating cell proliferation, apoptosis, and stem cell self-renewal. The mammalian Hippo signaling pathway involves a kinase cascade, where the MST1/2 kinases and the SAV1 scaffold protein form a complex that leads to phosphorylation and activation of LATS1/2. The LATS1/2 kinases phosphorylate YAP and TAZ, promoting cytoplasmic sequestration and inhibition of these transcription coactivators (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).