20% off purchase of 3 or more products* | Learn More >>

Monoclonal Antibody Immunoprecipitation Response to Pyrethroid

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: L-DOPA decarboxylase (DDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme that catalyzes the decarboxylation of L-DOPA to dopamine (1) and L-5HTP to serotonin (2). By catalyzing the reaction to produce dopamine, DDC is involved in many important metabolic processes and plays a central role in the complex neuroendocrine-immune regulatory network (1). DDC is expressed in the central nervous system (3), but has also been detected in some peripheral organs such as the liver and adrenal gland, as well as leukocytes of rat and human (1). DDC is thought to be the sole enzyme responsible for the synthesis of the trace amines 2-phenylethylamine, p-tyramine, and tryptamine, which are considered to act as neuromodulators (2,4). DDC is also regarded as a general biomarker for neuroendocrine tumors (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Mammalian voltage-gated sodium channels (VGSCs) are composed of a pore-forming α subunit and one or more regulatory β subunits (1). Four separate genes (SCN1B-SCN4B) encode the five mammalian β subunits β1, β1B, β2, β3, and β4. In general, β subunit proteins are type I transmembrane proteins, with the exception of secreted β1B protein (reviewed in 2). β subunits regulate α subunit gating and kinetics, which controls cell excitability (3,4). Sodium channel β subunits also function as Ig superfamily cell adhesion molecules that regulate cell adhesion and migration (5,6). Additional research reveals sequential processing of β subunit proteins by β-secretase (BACE1) and γ secretase, resulting in ectodomain shedding of β subunit and generation of an intracellular carboxy-terminal fragment (CTF). Generation of the CTF is thought to play a role in cell adhesion and migration (7,8). Multiple studies demonstrate a link between β subunit gene mutations and a number of disorders, including epilepsy, cardiac arrhythmia, multiple sclerosis, neuropsychiatric disorders, neuropathy, inflammatory pain, and cancer (9-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Mammalian voltage-gated sodium channels (VGSCs) are composed of a pore-forming α subunit and one or more regulatory β subunits (1). Four separate genes (SCN1B-SCN4B) encode the five mammalian β subunits β1, β1B, β2, β3, and β4. In general, β subunit proteins are type I transmembrane proteins, with the exception of secreted β1B protein (reviewed in 2). β subunits regulate α subunit gating and kinetics, which controls cell excitability (3,4). Sodium channel β subunits also function as Ig superfamily cell adhesion molecules that regulate cell adhesion and migration (5,6). Additional research reveals sequential processing of β subunit proteins by β-secretase (BACE1) and γ secretase, resulting in ectodomain shedding of β subunit and generation of an intracellular carboxy-terminal fragment (CTF). Generation of the CTF is thought to play a role in cell adhesion and migration (7,8). Multiple studies demonstrate a link between β subunit gene mutations and a number of disorders, including epilepsy, cardiac arrhythmia, multiple sclerosis, neuropsychiatric disorders, neuropathy, inflammatory pain, and cancer (9-13).

$303
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of the neurotransmitter dopamine and other catecholamines. TH functions as a tetramer, with each subunit composed of a regulatory and catalytic domain, and exists in several different isoforms (1,2). This enzyme is required for embryonic development since TH knockout mice die before or at birth (3). Levels of transcription, translation and posttranslational modification regulate TH activity. The amino-terminal regulatory domain contains three serine residues: Ser9, Ser31 and Ser40. Phosphorylation at Ser40 by PKA positively regulates the catalytic activity of TH (4-6). Phosphorylation at Ser31 by CDK5 also increases the catalytic activity of TH through stabilization of TH protein levels (7-9).