20% off purchase of 3 or more products* | Learn More >>

Monoclonal Antibody Negative Regulation of Cell Migration

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: ABHD6 (α/β-Hydrolase domain-containing 6) is a monoacylglycerol lipase, ubiquitously expressed with the highest expression in brown adipose tissue, small intestine, and brain (1). A high-fat diet upregulates ABHD6 mRNA expression in small intestine and liver, and ABHD6 knockdown protects against high-fat diet-induced obesity, hepatic steatosis, and systemic insulin resistance (2). In addition, it has been shown that ABHD6 is a negative modulator of glucose-stimulated insulin secretion (3). In the central nervous system, ABHD6 is expressed postsynptically and degrades the endocannabinoid 2-arachidonoylglycerol (2-AG), an endogenous activator of cannabinoid receptors (4,5). Inhibitors of α/β-hydrolase domain 6 (ABHD6) have been actively pursued as a promising approach to treat inflammation, metabolic disorders, and epilepsy (2,6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Nischarin (also known as imidazoline receptor antisera-selected protein, IRAS) was first identified through its association with the cytoplasmic domain of integrin α5, and shown to regulate cell migration and cystoskeletal organization (1).Nischarin regulates Rac-1 signaling (2), as well as the p21-activated kinase (PAK) (3) and cofilin/LIMK pathways (4). Nischarin also interacts with LKB1, regulating the migration and metastatic behavior of breast epithelial cells (5). In addition, nischarin regulates neuronal migration in rat brain (6).Research studies have implicated nischarin in the regulation of invasion and metastasis of breast cancer (7,8). Researchers have shown that nischarin is frequently downregulated in ovarian cancer, and regulates invasion through focal adhesion kinase (FAK) signaling (9).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin), Western Blotting

Background: Vinculin is a cytoskeletal protein that plays an important role in the regulation of focal adhesions and embryonic development (1-4). Three structural vinculin domains include an amino-terminal head, a short, flexible proline-rich region and a carboxy-terminal tail (1). In the inactive state, the head and tail domains of vinculin interact to form a closed confirmation. The open and active form of vinculin translocates to focal adhesions where it is thought to be involved in anchoring F-actin to the membrane and regulation of cell migration (2). Phospholipid binding to the tail domain and subsequent phosphorylation of vinculin at Ser1033 and Ser1045 by PKC-α and Tyr100 and Tyr1065 by Src kinases weakens the head-tail interaction (5,6). This change in vinculin allows the binding of a number of other proteins, including talin, α-actinin and paxillin, which disrupts the head-tail interaction and initiates the conformational change from the inactive to active state (2,4). Vinculin deficiencies are associated with a decrease in cell adhesion and an increase in cell motility, suggesting a possible role in metastatic growth (7,8). This is supported by a demonstrated relationship between decreased vinculin expression and increased carcinogenesis and metastasis in colorectal carcinoma (9).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Vinculin (E1E9V) XP® Rabbit mAb #13901.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Vinculin is a cytoskeletal protein that plays an important role in the regulation of focal adhesions and embryonic development (1-4). Three structural vinculin domains include an amino-terminal head, a short, flexible proline-rich region and a carboxy-terminal tail (1). In the inactive state, the head and tail domains of vinculin interact to form a closed confirmation. The open and active form of vinculin translocates to focal adhesions where it is thought to be involved in anchoring F-actin to the membrane and regulation of cell migration (2). Phospholipid binding to the tail domain and subsequent phosphorylation of vinculin at Ser1033 and Ser1045 by PKC-α and Tyr100 and Tyr1065 by Src kinases weakens the head-tail interaction (5,6). This change in vinculin allows the binding of a number of other proteins, including talin, α-actinin and paxillin, which disrupts the head-tail interaction and initiates the conformational change from the inactive to active state (2,4). Vinculin deficiencies are associated with a decrease in cell adhesion and an increase in cell motility, suggesting a possible role in metastatic growth (7,8). This is supported by a demonstrated relationship between decreased vinculin expression and increased carcinogenesis and metastasis in colorectal carcinoma (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TIE1 belongs to the Tie family of receptor tyrosine kinases. TIE1 is structurally similar to its homolog TIE2, but differs from the latter in that it does not have a known ligand and is thus considered an orphan receptor (1). A key function of TIE1 is to modulate TIE2 signaling, via heterodimerization with TIE2 at the cell surface (2). The effects of TIE1-TIE2 interaction are context-dependent; heterodimerization can either promote or inhibit downstream TIE2 signaling depending on localized TIE2 levels (3-6). Research studies have shown TIE1 to be implicated in angiogenesis, vascular maturation, tissue remodeling, and inflammation. Increased expression of TIE1 has also been associated with cancer stemness and atherosclerosis formation (7, 8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: In mammalian cells, the significance of histone H2B ubiquitination in chromatin epigenetics came from the identification of the budding yeast protein Bre1 (1,2). Together with the ubiquitin-conjugating enzyme Rad6, Bre1 serves as the E3 ligase in the monoubiquitination of the yeast histone H2B within transcribed regions of chromatin (1-3). Subsequently, the mammalian orthologs of yeast Bre1, RNF20 and RNF40, were identified (4,5). These two proteins form a tight heterodimer that acts as the major E3 ligase responsible for histone H2B monoubiquitination at Lys120 in mammalian cells, a modification linked to RNA Pol II-dependent transcription elongation in undamaged cells. Researchers have shown that DNA double-strand breaks (DSBs) are also capable of inducing monoubiquitination of H2B. This process depends upon the recruitment to DSB sites, as well as ATM-dependent phosphorylation of the RNF20-RNF40 heterodimer, thus highlighting a role for this E3 ligase in DSB repair pathways (6). Indeed, investigators have shown that loss of RNF20-RNF40 function promotes replication stress and chromosomal instability, which may constitute an early step in malignant transformation that precedes cell invasion (7).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Pig, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: The serum response factor (SRF) is a 67 kDa phospho-protein that, together with auxiliary factors, modulates transcription of immediate early genes containing serum response elements at their promoters (1,2). SRF contains several phosphorylation sites (3), but functional consequences of phosphorylation have not been identified unequivocally. Several growth factor- and calcium-regulated kinases, such as p90RSK and CaM kinase IV, can phosphorylate SRF at Ser103 (4,5), and Ser103 of SRF is also a nuclear target for MAPKAP kinase 2 (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The serum response factor (SRF) is a ubiquitous protein that modulates transcription of genes containing serum response elements (SRE) at their promoters. SRF regulates cellular processes such as cell proliferation and cytoskeletal signaling in conjunction with a variety of cofactors (1-3).Suppressor of cancer cell invasion (SCAI) is a highly conserved transcriptional cofactor that inhibits the activity of myocardin-related transcription factor (MRTF) family members MAL (MRTF-A), myocardin and OTT-MAL (4,5). SCAI controls the expression of integrin β1 and regulates cell migration and invasion in vitro (4). SCAI has also been shown to play a role in transcriptional regulation in neurons by regulating dendritic morphology through inhibition of the megakaryoblastic leukemia (MKL) family of transcription cofactors (6). Research studies have implicated SCAI in the regulation of the epithelial-to-mesenchymal transition (EMT) as well as in renal fibrosis (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: The Eph receptors are the largest known family of receptor tyrosine kinases (RTKs). They can be divided into two groups based on sequence similarity and on their preference for a subset of ligands. While EphA receptors bind to a glycosylphosphatidylinositol-anchored ephrin A ligand, EphB receptors bind to ephrin B proteins that have a transmembrane and cytoplasmic domain (1,2). Research studies have shown that Eph receptors and ligands may be involved in many diseases including cancer (3). Both ephrin A and B ligands have dual functions. As RTK ligands, ephrins stimulate the kinase activity of Eph receptors and activate signaling pathways in receptor-expressing cells. The ephrin extracellular domain is sufficient for this function as long as it is clustered (4). The second function of ephrins has been described as "reverse signaling", whereby the cytoplasmic domain becomes tyrosine phosphorylated, allowing interactions with other proteins that may activate signaling pathways in the ligand-expressing cells (5).The EphA1 receptor preferentially binds ephrin-A1 as a ligand (6). This ligand-receptor interaction stimulates EphA1 signaling and regulates cell morphology and motility through the ILK-RhoA-ROCK pathway (7). The EphA1 gene has been associated with late-onset Alzheimer's diseases (8,9). The role of EphA1 in cancer development falls into two opposite categories. In some type of cancer such as prostate, gastric and liver cancer, high expression of EphA1 associates with cancer metastasis and invasion (10-12). For other types of cancers, such as colon cancer and nonmelanoma skin cancer, down-regulation of the protein correlates with cancer development (13,14). The bidirectional signaling modulation of Ephrin-Ephrin receptor interaction might contribute this paradox phenomena (15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Tropomyosin-1 (TPM1) belongs to the high molecular weight members of tropomyosin family (1,2). The protein exists in an alpha-helical coiled-coil conformation and binds multiple acting monomers in a tight manner to stabilize and regulate the actin filament (3). Tropomyosins fullfill functions in muscle and non-muscle cells. In muscle cells, tropomyosins associate with the troponin complex and play a central role in the calcium-dependent regulation of striated muscle contraction in vertebrates. In non-muscle cells, tropomyosins are implicated in the formation and stabilization of cytoskeletal actin filaments to ensure normal cellular processes (1,2). Mutations of tropomysin-1 have been reported as a cause of dilated cardiac myopathies (4). Tropomyosin-1 also functions as a tumor suppressor, and many malignant tumors demonstrate downregulation of tropomyosin-1 expression (5-8). Tropomyosin-1 is phosphorylated at Ser283 through the Erk/DAPK pathway, which promotes stress fiber formation in response to oxidative stress (9-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey

Application Methods: Western Blotting

Background: PAI-1 is a secreted protein that belongs to the serine proteinase inhibitor (serpin) superfamily. It inhibits urokinase and tissue plasminogen activators (uPA and tPA) and thus, reduces the conversion of inactive plasminogen to plasmin (1). PAI-1 regulates fibrinolysis and plays an important role in vessel patency and tissue remodeling. Secreted PAI-1 interacts with the extracellular matrix (ECM) component vitronectin, thereby modulating cell-ECM interactions (2,3). PAI-1 is expressed in a variety of tissues with higher expression in liver, vascular endothelial cells, platelets, macrophages, and adipose tissue (1). Increased levels of PAI-1 are associated with deep vein thrombosis (4). Defects in PAI-1 cause plasminogen activator inhibitor-1 deficiency (PAI-1D), which is characterized by increased bleeding after injury or surgery (5). Research studies have shown that high levels of PAI-1 are associated with obesity, aging, insulin resistance, and type 2 diabetes (6-8). PAI-1 is transcriptionally regulated by TGF-β and mediates TGF-β-induced inhibition of cell migration and invasion in cancer cells (9). Studies have shown PAI-1 to be also involved in fibrosis (10).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: In mammalian cells, the significance of histone H2B ubiquitination in chromatin epigenetics came from the identification of the budding yeast protein Bre1 (1,2). Together with the ubiquitin-conjugating enzyme Rad6, Bre1 serves as the E3 ligase in the monoubiquitination of the yeast histone H2B within transcribed regions of chromatin (1-3). Subsequently, the mammalian orthologs of yeast Bre1, RNF20 and RNF40, were identified (4,5). These two proteins form a tight heterodimer that acts as the major E3 ligase responsible for histone H2B monoubiquitination at Lys120 in mammalian cells, a modification linked to RNA Pol II-dependent transcription elongation in undamaged cells. Researchers have shown that DNA double-strand breaks (DSBs) are also capable of inducing monoubiquitination of H2B. This process depends upon the recruitment to DSB sites, as well as ATM-dependent phosphorylation of the RNF20-RNF40 heterodimer, thus highlighting a role for this E3 ligase in DSB repair pathways (6). Indeed, investigators have shown that loss of RNF20-RNF40 function promotes replication stress and chromosomal instability, which may constitute an early step in malignant transformation that precedes cell invasion (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Chloride intracellular channel (CLIC) proteins belong to a family of highly conserved transport proteins found as both soluble and membrane-bound forms (1). Although CLIC proteins have putative, selective chloride ion channel activity, they are structural homologs to members of the glutathione-S-transferase protein superfamily and are likewise regulated by redox status (2). CLIC proteins are distinct from other ion channels in that they are found as both soluble and integral membrane forms, and their form determines their function (3-6). Chloride intracellular channel proteins are ubiquitously expressed in numerous tissue types and are involved in diverse biological functions (1,2).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: CD105/Endoglin is an auxiliary receptor for the TGF-β receptor complex, functioning in related signaling pathways (1,2). CD105/Endoglin is a transmembrane protein that exists as a disulfide-linked homodimer. It is mainly expressed in vascular and connective tissues and in endothelial and stromal cells. Upregulated CD105/endoglin expression has been reported during wound healing and tumor vascularization, and in inflammatory tissues and developing embryos (1-4). Mutations inCD105/endoglin have been found to be a causal factor of hereditary hemorrhagic telangiectasia (HHT), a disease characterized by malformation of vascular structure (5,6). The importance of this protein for normal and tumor vascular function makes it a good marker for endothelial cell proliferation as well as a potential therapeutic target in cancer (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The founding members of the interleukin-1 (IL-1) superfamily include pro-inflammatory cytokines IL-1α and IL-1β, and a third protein that acts as an IL-1 receptor antagonist (IL-1RA). At least six similar proteins have been recently identified, including a homolog of IL-1RA (IL1F5). The three better-characterized proteins (IL-1a, IL-1b and IL-1RA) are mainly expressed in macrophages, monocytes, and dendritic cells. IL-1a and IL-1b act as potent inflammatory cytokines that help regulate host defense and immune responses (1). Binding of these pro-inflammatory cytokines to an IL-1 receptor recruits adapter proteins (such as IRAK) to the receptor. Phosphorylation of these adaptor proteins promotes downstream signaling cascades associated with the immune response (2). Altered expression of both IL-1a and IL-1b is associated with an extensive list of human disorders, including Alzheimer's disease, rheumatoid arthritis, psoriasis and various forms of cancer (3,4). IL-1RA acts as an anti-inflammatory cytokine, binding the IL-1 receptor to limit the response to inflammation (5). Because it plays a key role in regulating the inflammatory response, recombinant IL-1RA is a therapeutic agent used in the treatment of diseases such as rheumatoid arthritis. Alternatively, mutation of the corresponding IL-1RA gene may be associated with susceptibility to the development of specific cancers (6).

$348
400 µl
This Cell Signaling Technology antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated Sepharose® beads. PTEN (D4.3) XP® Rabbit mAb (Sepharose® Bead Conjugate) is useful for the immunoprecipitation of PTEN protein.
APPLICATIONS
REACTIVITY
Dog, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation

Background: PTEN (phosphatase and tensin homologue deleted on chromosome ten), also referred to as MMAC (mutated in multiple advanced cancers) phosphatase, is a tumor suppressor implicated in a wide variety of human cancers (1). PTEN encodes a 403 amino acid polypeptide originally described as a dual-specificity protein phosphatase (2). The main substrates of PTEN are inositol phospholipids generated by the activation of the phosphoinositide 3-kinase (PI3K) (3). PTEN is a major negative regulator of the PI3K/Akt signaling pathway (1,4,5). PTEN possesses a carboxy-terminal, noncatalytic regulatory domain with three phosphorylation sites (Ser380, Thr382, and Thr383) that regulate PTEN stability and may affect its biological activity (6,7). PTEN regulates p53 protein levels and activity (8) and is involved in G protein-coupled signaling during chemotaxis (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Thyroid Transcription Factor 1 (TTF-1, also known as NKX2-1), a member of the NKX homeobox transcription factor family, was initially discovered in the FRTL-5 rat thyroid cell line (1). Subsequent studies have shown that TTF-1 plays an important role in differentiation and morphogenesis of the developing thyroid, lung, and ventral forebrain (2). TTF-1 controls the expression of several genes, some of which are tissue specific, such as: thyroglobulin, thyroperoxidase, and the thyrotropin receptor in the thyroid; and surfactant proteins and clara cell secretory protein in the lung (2,3). Investigators have found that TTF-1 is expressed in malignant tumors of the thyroid and lung, and it is commonly used as a marker for both primary and malignant lung cancers (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: SLIT2 is an extracellular matrix-associated SLIT family member that functions as a ligand for roundabout (ROBO) family receptors (1). Activation of ROBO receptors by SLIT2 regulates various biological processes, including promoting cellular senescence via WNT inhibition (2), suppressing migration by enhanced β-catenin/E-cadherin association, regulating actin polymerization (4, 5), and suppressing cell proliferation induced by SDF1 and MCP1 (6, 7). In development, the SLIT-ROBO pathways play important roles in neuronal axon guidance, angiogenesis, and both kidney and mammary gland organogenesis. SLIT2 expression has been reported to suppress cancer cell growth, invasion, and metastasis, suggesting that modulation of SLIT2-ROBO signaling may have therapeutic potential in cancer biology (8, 9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Tropomyosin-1 (TPM1) belongs to the high molecular weight members of tropomyosin family (1,2). The protein exists in an alpha-helical coiled-coil conformation and binds multiple acting monomers in a tight manner to stabilize and regulate the actin filament (3). Tropomyosins fullfill functions in muscle and non-muscle cells. In muscle cells, tropomyosins associate with the troponin complex and play a central role in the calcium-dependent regulation of striated muscle contraction in vertebrates. In non-muscle cells, tropomyosins are implicated in the formation and stabilization of cytoskeletal actin filaments to ensure normal cellular processes (1,2). Mutations of tropomysin-1 have been reported as a cause of dilated cardiac myopathies (4). Tropomyosin-1 also functions as a tumor suppressor, and many malignant tumors demonstrate downregulation of tropomyosin-1 expression (5-8). Tropomyosin-1 is phosphorylated at Ser283 through the Erk/DAPK pathway, which promotes stress fiber formation in response to oxidative stress (9-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Na+/H+ exchanger regulatory factor (NHERF1 or EBP-50) is one of several related PDZ domain-containing proteins (1). NHERF1 was first identified as a necessary cofactor for cyclic AMP-associated inhibition of Na+/ H+ exchanger isoform 3 (NHE3) (2). NHERF1 is a multifunctional adaptor protein that interacts with receptors and ion transporters via its PDZ domains, and with the ERM family of proteins, including merlin, via its carboxy-terminus (2,3). NHERF1 may play an important role in breast cancer. Estrogen has been found to induce NHERF1 in estrogen receptor-positive breast cancer cells (2,3). Furthermore, NHERF1 has been shown to bind to PDGFR, which is activated in breast carcinomas. NHERF1 has been found to promote the formation of a ternary complex containing PTEN, NHERF1, and PDGFR. Therefore, NHERF1 may function to recruit PTEN to PDGFR to inhibit the activation of PI3K/Akt signaling in normal cells; this mechanism may be disrupted in cancer (4). NHERF1 also binds to the cystic fibrosis transmembrane conductance regulator (CFTR), which functions as an ion channel and has disease-causing mutations in cystic fibrosis (5). Other proposed functions of NHERF1 include testicular differentiation, endosomal recycling, membrane targeting, protein sorting, and trafficking (6).