Interested in promotions? | Click here >>

Monoclonal Antibody Peroxisome

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Peroxin-5 (PEX5) is the shuttle receptor that delivers proteins to peroxisomes (1). In the cytosol, PEX5 binds to the peroxisomal targeting signal 1 (PTS1), a short peptide sequence present at the extreme C termini of newly synthesized peroxisomal matrix proteins. The PEX5-cargo complex interacts with the peroxisomal docking/translocation machinery on the peroxisomal membrane, where the cargo is released into the organelle matrix. During this process, PEX5 is monoubiquitinated at a conserved cysteine residue, and the ubiquitin-PEX5 conjugate is released from the organelle into the cytosol, where PEX5 is deubiquitinated and ready the next round of targeting (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: IDH1 is one of three isocitrate dehydrogenases that catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). These enzymes exist in two distinct subclasses that utilize either NAD or NADP+ respectively, as an electron acceptor (1). IDH1 is the NADP+-dependent isocitrate dehydrogenase found in the cytoplasm and peroxisomes. IDH2 and 3 are mitochondrial enzymes that also function in the Krebs cycle. IDH1 is inactivated by phosphorylation at Ser113 and contains a clasp-like domain wherein both polypeptide chains in the dimer interlock (2,3). IDH1 is expressed in a wide range of species and also in organisms that lack a complete citric acid cycle. Mutations in IDH1 have been reported in glioblastoma (4), acute myeloid leukemia (5,6), and other malignancies (7). IDH1 appears to function as a tumor suppressor that, when mutationally inactivated, contributes to tumorigenesis in part through induction of the HIF-1 pathway (8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Catalase catalyzes the conversion of hydrogen peroxide to water and oxygen (1). Research studies show that overexpression of this antioxidant enzyme increases the ability of pancreatic β-cells to scavenge reactive oxygen species (ROS), thereby protecting pancreatic β-cells from oxidative stress (2). The pancreatic β-cells overexpressing this enzyme are also protected from hydrogen peroxide-mediated lipotoxicity, providing further evidence for the importance of catalase in the pathogenesis of diabetes (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Catalase catalyzes the conversion of hydrogen peroxide to water and oxygen (1). Research studies show that overexpression of this antioxidant enzyme increases the ability of pancreatic β-cells to scavenge reactive oxygen species (ROS), thereby protecting pancreatic β-cells from oxidative stress (2). The pancreatic β-cells overexpressing this enzyme are also protected from hydrogen peroxide-mediated lipotoxicity, providing further evidence for the importance of catalase in the pathogenesis of diabetes (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Dynamin-related protein 1 (DRP1) is a member of the dynamin superfamily of GTPases. Members of this family have diverse cellular functions including vesicle scission, organelle fission, viral resistance, and intracellular trafficking (reviewed in 1). DRP1 affects mitochondrial morphology and is important in mitochondrial and peroxisomal fission in mammalian cells (2-5). The yeast ortholog of DRP1 clusters into a spiral-shaped structure on the mitochondrial membrane at the site of fission (reviewed in 6), and this structure is likely conserved in mammalian cells (3). The division of the mitochondria, which is required for apoptosis, as well as normal cell growth and development is controlled, in part, by the phosphorylation of DRP1 at Ser616 by Cdk1/cyclin B and at Ser637 by protein kinase A (PKA) (reviewed in 6). When phosphorylated at Ser616, DRP1 stimulates mitochondrial fission during mitosis. Conversely, fission is inhibited when DRP1 is phosphorylated at Ser637 (reviewed in 6). Dephosphorylation at Ser637 by calcineurin reverses this inhibition (7). In addition to phosphorylation, sumoylation of DRP1 is also an enhancer of mitochondrial fission (8). Balancing fission and fusion events is essential for proper mitochondrial function. Research studies have demonstrated mitochondrial defects in a variety of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease (reviewed in 6).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated IDH1 (D2H1) Rabbit mAb #8137.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: IDH1 is one of three isocitrate dehydrogenases that catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). These enzymes exist in two distinct subclasses that utilize either NAD or NADP+ respectively, as an electron acceptor (1). IDH1 is the NADP+-dependent isocitrate dehydrogenase found in the cytoplasm and peroxisomes. IDH2 and 3 are mitochondrial enzymes that also function in the Krebs cycle. IDH1 is inactivated by phosphorylation at Ser113 and contains a clasp-like domain wherein both polypeptide chains in the dimer interlock (2,3). IDH1 is expressed in a wide range of species and also in organisms that lack a complete citric acid cycle. Mutations in IDH1 have been reported in glioblastoma (4), acute myeloid leukemia (5,6), and other malignancies (7). IDH1 appears to function as a tumor suppressor that, when mutationally inactivated, contributes to tumorigenesis in part through induction of the HIF-1 pathway (8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Dynamin-related protein 1 (DRP1) is a member of the dynamin superfamily of GTPases. Members of this family have diverse cellular functions including vesicle scission, organelle fission, viral resistance, and intracellular trafficking (reviewed in 1). DRP1 affects mitochondrial morphology and is important in mitochondrial and peroxisomal fission in mammalian cells (2-5). The yeast ortholog of DRP1 clusters into a spiral-shaped structure on the mitochondrial membrane at the site of fission (reviewed in 6), and this structure is likely conserved in mammalian cells (3). The division of the mitochondria, which is required for apoptosis, as well as normal cell growth and development is controlled, in part, by the phosphorylation of DRP1 at Ser616 by Cdk1/cyclin B and at Ser637 by protein kinase A (PKA) (reviewed in 6). When phosphorylated at Ser616, DRP1 stimulates mitochondrial fission during mitosis. Conversely, fission is inhibited when DRP1 is phosphorylated at Ser637 (reviewed in 6). Dephosphorylation at Ser637 by calcineurin reverses this inhibition (7). In addition to phosphorylation, sumoylation of DRP1 is also an enhancer of mitochondrial fission (8). Balancing fission and fusion events is essential for proper mitochondrial function. Research studies have demonstrated mitochondrial defects in a variety of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease (reviewed in 6).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Mitochondrial fission factor (MFF) is a tail-anchored protein that resides within the outer mitochondrial membrane and is part of the mitochondrial fission complex. MFF participates in mitochondrial fission by serving as one of multiple receptors for the GTPase dynamin-related protein 1 (Drp1) (1-4). Research studies have also shown that MFF is a peroxisomal membrane protein and participates in peroxisome fission by serving as a receptor for another GTPase, dynamin-like protein 1 (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: α-methylacyl-CoA racemase (AMACR), an enzyme localized in peroxisomes and mitochondria, is involved in the β-oxidation of branched-chain fatty acids and fatty acid derivatives (1). AMACR has been reported to be a biomarker for prostate cancer (2-4). The expression of AMACR is also related to other types of cancers such as hepatocellular carcinoma (1), noninvasive bladder cancer (5), colorectal cancer (6) and gastric adenocarcinoma (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Pro-Opio-Melano-Cortin (POMC) is a precursor protein expressed in the pituitary and the brain where it is processed into several peptide hormones and neuropeptides. Among these peptides are ACTH, α- and β-MSH, β-and γ-LPH, CLIP, β-endorphin, and N-POMC (1). POMC is involved in hypothalamic circuits regulating feeding behavior and POMC-producing neurons promote satiety (2). POMC neurons are also the target of leptin and insulin for the promotion of the browning of white fat (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Three distinct types of phosphoinositide 3-kinases (PI3K) have been characterized. Unlike other PI3Ks, PI3K class III catalyzes the phosphorylation of phosphatidylinositol at the D3 position, producing phosphatidylinositol-3-phosphate (PIP3) (1). PI3K class III is the mammalian homolog of Vps34, first identified in yeast. PI3K class III interacts with the regular subunit p150, the mammalian homolog of Vps15, which regulates cellular membrane association through myristoylation (2,3). PIP3 recruits several proteins with FYVE or PX domains to membranes regulating vesicular transport and protein sorting (4). Moreover, PI3K class III has been shown to regulate autophagy, trimeric G-protein signaling, and the mTOR nutrient-sensing pathway (5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Dynamin-related protein 1 (DRP1) is a member of the dynamin superfamily of GTPases. Members of this family have diverse cellular functions including vesicle scission, organelle fission, viral resistance, and intracellular trafficking (reviewed in 1). DRP1 affects mitochondrial morphology and is important in mitochondrial and peroxisomal fission in mammalian cells (2-5). The yeast ortholog of DRP1 clusters into a spiral-shaped structure on the mitochondrial membrane at the site of fission (reviewed in 6), and this structure is likely conserved in mammalian cells (3). The division of the mitochondria, which is required for apoptosis, as well as normal cell growth and development is controlled, in part, by the phosphorylation of DRP1 at Ser616 by Cdk1/cyclin B and at Ser637 by protein kinase A (PKA) (reviewed in 6). When phosphorylated at Ser616, DRP1 stimulates mitochondrial fission during mitosis. Conversely, fission is inhibited when DRP1 is phosphorylated at Ser637 (reviewed in 6). Dephosphorylation at Ser637 by calcineurin reverses this inhibition (7). In addition to phosphorylation, sumoylation of DRP1 is also an enhancer of mitochondrial fission (8). Balancing fission and fusion events is essential for proper mitochondrial function. Research studies have demonstrated mitochondrial defects in a variety of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease (reviewed in 6).

$303
100 µl
APPLICATIONS
REACTIVITY
Rat

Application Methods: Western Blotting

Background: Dynamin-related protein 1 (DRP1) is a member of the dynamin superfamily of GTPases. Members of this family have diverse cellular functions including vesicle scission, organelle fission, viral resistance, and intracellular trafficking (reviewed in 1). DRP1 affects mitochondrial morphology and is important in mitochondrial and peroxisomal fission in mammalian cells (2-5). The yeast ortholog of DRP1 clusters into a spiral-shaped structure on the mitochondrial membrane at the site of fission (reviewed in 6), and this structure is likely conserved in mammalian cells (3). The division of the mitochondria, which is required for apoptosis, as well as normal cell growth and development is controlled, in part, by the phosphorylation of DRP1 at Ser616 by Cdk1/cyclin B and at Ser637 by protein kinase A (PKA) (reviewed in 6). When phosphorylated at Ser616, DRP1 stimulates mitochondrial fission during mitosis. Conversely, fission is inhibited when DRP1 is phosphorylated at Ser637 (reviewed in 6). Dephosphorylation at Ser637 by calcineurin reverses this inhibition (7). In addition to phosphorylation, sumoylation of DRP1 is also an enhancer of mitochondrial fission (8). Balancing fission and fusion events is essential for proper mitochondrial function. Research studies have demonstrated mitochondrial defects in a variety of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease (reviewed in 6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Dynamin-related protein 1 (DRP1) is a member of the dynamin superfamily of GTPases. Members of this family have diverse cellular functions including vesicle scission, organelle fission, viral resistance, and intracellular trafficking (reviewed in 1). DRP1 affects mitochondrial morphology and is important in mitochondrial and peroxisomal fission in mammalian cells (2-5). The yeast ortholog of DRP1 clusters into a spiral-shaped structure on the mitochondrial membrane at the site of fission (reviewed in 6), and this structure is likely conserved in mammalian cells (3). The division of the mitochondria, which is required for apoptosis, as well as normal cell growth and development is controlled, in part, by the phosphorylation of DRP1 at Ser616 by Cdk1/cyclin B and at Ser637 by protein kinase A (PKA) (reviewed in 6). When phosphorylated at Ser616, DRP1 stimulates mitochondrial fission during mitosis. Conversely, fission is inhibited when DRP1 is phosphorylated at Ser637 (reviewed in 6). Dephosphorylation at Ser637 by calcineurin reverses this inhibition (7). In addition to phosphorylation, sumoylation of DRP1 is also an enhancer of mitochondrial fission (8). Balancing fission and fusion events is essential for proper mitochondrial function. Research studies have demonstrated mitochondrial defects in a variety of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease (reviewed in 6).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for direct immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated MFF (E5W4M) XP® Rabbit mAb #84580.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Mitochondrial fission factor (MFF) is a tail-anchored protein that resides within the outer mitochondrial membrane and is part of the mitochondrial fission complex. MFF participates in mitochondrial fission by serving as one of multiple receptors for the GTPase dynamin-related protein 1 (Drp1) (1-4). Research studies have also shown that MFF is a peroxisomal membrane protein and participates in peroxisome fission by serving as a receptor for another GTPase, dynamin-like protein 1 (5,6).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated MFF (E5W4M) XP® Rabbit mAb #84580.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Mitochondrial fission factor (MFF) is a tail-anchored protein that resides within the outer mitochondrial membrane and is part of the mitochondrial fission complex. MFF participates in mitochondrial fission by serving as one of multiple receptors for the GTPase dynamin-related protein 1 (Drp1) (1-4). Research studies have also shown that MFF is a peroxisomal membrane protein and participates in peroxisome fission by serving as a receptor for another GTPase, dynamin-like protein 1 (5,6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Three distinct types of phosphoinositide 3-kinases (PI3K) have been characterized. Unlike other PI3Ks, PI3K class III catalyzes the phosphorylation of phosphatidylinositol at the D3 position, producing phosphatidylinositol-3-phosphate (PIP3) (1). PI3K class III is the mammalian homolog of Vps34, first identified in yeast. PI3K class III interacts with the regular subunit p150, the mammalian homolog of Vps15, which regulates cellular membrane association through myristoylation (2,3). PIP3 recruits several proteins with FYVE or PX domains to membranes regulating vesicular transport and protein sorting (4). Moreover, PI3K class III has been shown to regulate autophagy, trimeric G-protein signaling, and the mTOR nutrient-sensing pathway (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. Major types of intermediate filaments are distinguished by their cell-specific expression: cytokeratins (epithelial cells), glial fibrillary acidic protein (GFAP) (glial cells), desmin (skeletal, visceral, and certain vascular smooth muscle cells), vimentin (mesenchyme origin), and neurofilaments (neurons). GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape (1). In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes (2). Research studies have shown that vimentin is present in sarcomas, but not carcinomas, and its expression is examined in conjunction with that of other markers to distinguish between the two (3). Vimentin's dynamic structural changes and spatial re-organization in response to extracellular stimuli help to coordinate various signaling pathways (4). Phosphorylation of vimentin at Ser56 in smooth muscle cells regulates the structural arrangement of vimentin filaments in response to serotonin (5,6). Remodeling of vimentin and other intermediate filaments is important during lymphocyte adhesion and migration through the endothelium (7).During mitosis, CDK1 phosphorylates vimentin at Ser56. This phosphorylation provides a PLK binding site for vimentin-PLK interaction. PLK further phosphorylates vimentin at Ser82, which might serve as memory phosphorylation site and play a regulatory role in vimentin filament disassembly (8,9). Additionally, studies using various soft-tissue sarcoma cells have shown that phosphorylation of vimentin at Ser39 by Akt1 enhances cell migration and survival, suggesting that vimentin could be a potential target for soft-tissue sarcoma targeted therapy (10,11).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. Major types of intermediate filaments are distinguished by their cell-specific expression: cytokeratins (epithelial cells), glial fibrillary acidic protein (GFAP) (glial cells), desmin (skeletal, visceral, and certain vascular smooth muscle cells), vimentin (mesenchyme origin), and neurofilaments (neurons). GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape (1). In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes (2). Research studies have shown that vimentin is present in sarcomas, but not carcinomas, and its expression is examined in conjunction with that of other markers to distinguish between the two (3). Vimentin's dynamic structural changes and spatial re-organization in response to extracellular stimuli help to coordinate various signaling pathways (4). Phosphorylation of vimentin at Ser56 in smooth muscle cells regulates the structural arrangement of vimentin filaments in response to serotonin (5,6). Remodeling of vimentin and other intermediate filaments is important during lymphocyte adhesion and migration through the endothelium (7).During mitosis, CDK1 phosphorylates vimentin at Ser56. This phosphorylation provides a PLK binding site for vimentin-PLK interaction. PLK further phosphorylates vimentin at Ser82, which might serve as memory phosphorylation site and play a regulatory role in vimentin filament disassembly (8,9). Additionally, studies using various soft-tissue sarcoma cells have shown that phosphorylation of vimentin at Ser39 by Akt1 enhances cell migration and survival, suggesting that vimentin could be a potential target for soft-tissue sarcoma targeted therapy (10,11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Western Blotting

Background: Tripartite motif containing protein 37 (TRIM37, also known as MUL1) is a member of the tripartite motif (TRIM) family whose members contain a RING domain, a B-box, and a coiled-coil region (together called RBCC). TRIM37 was initially described as the defining truncation mutation in mulibrey nanism (1). An E3 ubiquitin ligase, TRIM37 is responsible for the monoubiquitination of histone H2A at Lys119, and is amplified in over 40% of breast cancers (2,3). TRIM37 interacts with polycomb group proteins EZH2 and SUZ12, and contributes to histone H3K27 lysine tri-methylation and subsequent silencing of tumor suppressor genes (3). Oncogenic activity of TRIM37 has also been reported in pancreatic, hepatic, and colorectal cancers (4-7).