20% off purchase of 3 or more products* | Learn More >>

Monoclonal Antibody Regulation of Rho Protein Signal Transduction

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The Rho family small GTPases, including Rho, Rac and cdc42, act as molecular switches, regulating processes such as cell migration, adhesion, proliferation and differentiation. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of bound GDP for GTP, and inhibited by GTPase activating proteins (GAPs), which catalyze the hydrolysis of GTP to GDP. A third level of regulation is provided by the stoichiometric binding of Rho GDP dissociation inhibitor (RhoGDI) (1).G-protein coupled receptors (GPCRs) at the cell surface signal through heteromeric G proteins to small GTPases such as Rho, which then signal to downstream effector molecules (2). p115 RhoGEF/ArhGEF1 and its family members PDZ-RhoGEF (PRG), and LARG are stimulated by heteromeric G proteins and thus couple signaling from GPCRs to Rho small GTPases (3-6). In a mouse model of asthma, p115 RhoGEF is necessary for T cells to enable airway inflammation and hyperreactivity (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rho family small GTPases regulate processes such as cell migration, adhesion, proliferation, and differentiation. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GDP for GTP. GEF-H1 is a Rho GEF that localizes to microtubules and regulates Rho activity in response to microtubule destabilization (1). Loss of interaction between GEF-H1 and microtubules leads to activation of Rho (2). Phosphorylation of GEF-H1 at Ser886 (Ser885 in mouse), a site located in the 14-3-3 binding motif, has been implicated in recruitment of 14-3-3 and GEF-H1 to microtubules (3), and in the regulation of RhoA activity in response to mitotic kinases during cytokinesis (4).GEF-H1 has also been shown to localize to tight junctions and modulate polarized cell permeability (5,6). GEF-H1 is inactivated by binding to cingulin at epithelial tight junctions, inactivating RhoA and leading to G1/S arrest (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Cool/Pix proteins comprise a family of guanine nucleotide exchange factors (GEFs) localized to focal adhesions. The family consists of two isoforms, cool2/αPix and cool1/βPix, the latter having two splice variants that vary in their carboxy termini (1). Cool2/αPix, like other GEFs, has a DH (Dbl homology) domain, which allows binding of small GTPases and GDP/GTP exchange, and a PH (Pleckstrin homology) domain (2).X-chromosomal genes mutated in nonspecific mental retardation (MRX) comprise a family of genes, including the gene encoding Cool2/αPix, thought to be involved in mental retardation (3,4).Cool2/αPix interacts with β-parvin/affixin, a protein involved in integrin signaling (5), and may act downstream of integrin-linked kinase (ILK) to regulate actin reorganization and cell spreading (6).When Cool2αPix exists as a dimer, it functions as a Rac-specific GEF, whereas the monomeric protein acts as a GEF for both Rac and Cdc42. Regulation of Cool2/αPix dimerization, and therefore its specificity, occurs at least in part through p21 activated kinase (PAK) in response to extracellular signaling (7). Further, binding of Cdc42 enhances the Rac GEF activity of the Cool2/αPix dimer. Activated Rac in turn inhibits Cool2/αPix Rac GEF activity (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Rho family small GTPases regulate processes such as cell migration, adhesion, proliferation, and differentiation. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GDP for GTP. GEF-H1 is a Rho GEF that localizes to microtubules and regulates Rho activity in response to microtubule destabilization (1). Loss of interaction between GEF-H1 and microtubules leads to activation of Rho (2). Phosphorylation of GEF-H1 at Ser886 (Ser885 in mouse), a site located in the 14-3-3 binding motif, has been implicated in recruitment of 14-3-3 and GEF-H1 to microtubules (3), and in the regulation of RhoA activity in response to mitotic kinases during cytokinesis (4).GEF-H1 has also been shown to localize to tight junctions and modulate polarized cell permeability (5,6). GEF-H1 is inactivated by binding to cingulin at epithelial tight junctions, inactivating RhoA and leading to G1/S arrest (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Rho family GTPases are key regulators of diverse processes such as cytoskeletal organization, cell growth and differentiation, transcriptional regulation, and cell adhesion/motility. The activities of these proteins are controlled primarily through guanine nucleotide exchange factors (GEFs) that facilitate the exchange of GDP for GTP, promoting the active (GTP-bound) state, and GTPase activating proteins (GAPs) that promote GTP hydrolysis and the inactive (GDP-bound) state (1,2).The p190 RhoGAP proteins are widely expressed Rho family GAPs. p190-A has been characterized as a tumor suppressor, and research studies have shown that loss or rearrangement of the chromosomal region containing the gene for p190-A is linked to tumor development (3,4). p190-A binds the mitogen-inducible transcription factor TFII-I, sequestering it in the cytoplasm and inhibiting its activity. Phosphorylation of p190-A at Tyr308 reduces its affinity for TFII-I, relieving the inhibition (5). p190-A can also inhibit growth factor-induced gliomas in mice (6) and affect cleavage furrow formation and cytokinesis in cultured cells (7).Mice lacking p190-B RhoGAP show excessive Rho activation and a reduction in activation of the transcription factor CREB (8). Cells deficient in p190-B display defective adipogenesis (9). There is increasing evidence that p190 undergoes tyrosine phosphorylation, which activates its GAP domain (9-11). Levels of tyrosine phosphorylation are enhanced by Src overexpression (10,11). IGF-I treatment downregulates Rho through phosphorylation and activation of p190-B RhoGAP, thereby enhancing IGF signaling implicated in adipogenesis (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Rho family GTPases are key regulators of diverse processes such as cytoskeletal organization, cell growth and differentiation, transcriptional regulation, and cell adhesion/motility. The activities of these proteins are controlled primarily through guanine nucleotide exchange factors (GEFs) that facilitate the exchange of GDP for GTP, promoting the active (GTP-bound) state, and GTPase activating proteins (GAPs) that promote GTP hydrolysis and the inactive (GDP-bound) state (1,2).The p190 RhoGAP proteins are widely expressed Rho family GAPs. p190-A has been characterized as a tumor suppressor, and research studies have shown that loss or rearrangement of the chromosomal region containing the gene for p190-A is linked to tumor development (3,4). p190-A binds the mitogen-inducible transcription factor TFII-I, sequestering it in the cytoplasm and inhibiting its activity. Phosphorylation of p190-A at Tyr308 reduces its affinity for TFII-I, relieving the inhibition (5). p190-A can also inhibit growth factor-induced gliomas in mice (6) and affect cleavage furrow formation and cytokinesis in cultured cells (7).Mice lacking p190-B RhoGAP show excessive Rho activation and a reduction in activation of the transcription factor CREB (8). Cells deficient in p190-B display defective adipogenesis (9). There is increasing evidence that p190 undergoes tyrosine phosphorylation, which activates its GAP domain (9-11). Levels of tyrosine phosphorylation are enhanced by Src overexpression (10,11). IGF-I treatment downregulates Rho through phosphorylation and activation of p190-B RhoGAP, thereby enhancing IGF signaling implicated in adipogenesis (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Son of sevenless (SOS) was first identified in Drosophila as a guanine nucleotide exchange factor (GEF) for Ras acting downstream of the Sevenless receptor (1). Two closely related homologs of Drosophila SOS are found in mammalian cells: SOS1 and SOS2 (2). SOS1 consists of histone folds, Dbl (DH) and pleckstrin (PH) homology domains, a Ras exchange motif (REM), and Cdc25 homology and polyproline domains (3). SOS1 binds to GRB2, NCK, and other adaptor proteins, and plays an important role in ERK activation downstream of protein tyrosine kinase receptor (RTK). Research studies have identified mutations in the corresponding SOS1 gene of patients with Noonan syndrome, a developmental disorder characterized by short stature, facial dysmorphia, and congenital heart defects (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Vav proteins belong to the Dbl family of guanine nucleotide exchange factors (GEFs) for Rho/Rac small GTPases. The three identified mammalian Vav proteins (Vav1, Vav2 and Vav3) differ in their expression. Vav1 is expressed only in hematopoietic cells and is involved in the formation of the immune synapse. Vav2 and Vav3 are more ubiquitously expressed. Vav proteins contain the Dbl homology domain, which confers GEF activity, as well as protein interaction domains that allow them to function in pathways regulating actin cytoskeleton organization (reviewed in 1). Phosphorylation stimulates the GEF activity of Vav protein towards Rho/Rac (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Phosphoinositide-3,4,5-triphosphate (PtdIns(3,4,5)P3)-dependent Rac exchanger 1 (PREX1) is a Rac-specific GTP-exchange factor (GEF) regulated by heterotrimeric G-protein β/γ subunits and the lipid second messenger PtdIns(3,4,5)P3 (1-4). PREX1 contains two DEP (Dishevelled, Egl-10, and Pleckstrin homology) domains that coordinate heterotrimeric G-protein signaling. It also contains a Dbl-homology domain, which exhibits Rac-GEF activity, and PH and PDZ domains for interacting with upstream and downstream signaling components (1). Originally shown to modulate cellular migration of neutrophils by Rac2 activation (5-8), it is clear that PREX1 plays a broader role in modulating cell migration. PREX1 promotes metastasis of prostate cancer and melanoma cells, affects endothelial junction integrity, and is required for platelet generation and function (9-14). Research studies suggest that PREX1 plays an essential role in mediating ErbB-dependent signaling events in breast cancer by coordinating Rac activation in response to paracrine signals within the tumor microenvironment. Activation of PREX1 downstream of ErbB3 and EGFR chemokine receptors (CXCR4) promotes Rac activation, increased migration, proliferation, tumorigenesis, and metastasis in breast cancer cells (15,16). Consistent with this observation, deletion of PREX1 expression in mice results in resistance to melanoma metastasis (11). Expression of PREX1 in human tumors transplanted into mice inversely correlates with increased tumor progression and poor survival (15). Additional research studies suggest that PREX Rac-GEF activity is enhanced by phosphorylation in response to growth factors or hormones, and may require coincident dephosphorylation of two PH domain serine residues. The upstream kinases and precise regulatory mechanism remains elusive (15,17).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin)

Background: Phosphoinositide-3,4,5-triphosphate (PtdIns(3,4,5)P3)-dependent Rac exchanger 1 (PREX1) is a Rac-specific GTP-exchange factor (GEF) regulated by heterotrimeric G-protein β/γ subunits and the lipid second messenger PtdIns(3,4,5)P3 (1-4). PREX1 contains two DEP (Dishevelled, Egl-10, and Pleckstrin homology) domains that coordinate heterotrimeric G-protein signaling. It also contains a Dbl-homology domain, which exhibits Rac-GEF activity, and PH and PDZ domains for interacting with upstream and downstream signaling components (1). Originally shown to modulate cellular migration of neutrophils by Rac2 activation (5-8), it is clear that PREX1 plays a broader role in modulating cell migration. PREX1 promotes metastasis of prostate cancer and melanoma cells, affects endothelial junction integrity, and is required for platelet generation and function (9-14). Research studies suggest that PREX1 plays an essential role in mediating ErbB-dependent signaling events in breast cancer by coordinating Rac activation in response to paracrine signals within the tumor microenvironment. Activation of PREX1 downstream of ErbB3 and EGFR chemokine receptors (CXCR4) promotes Rac activation, increased migration, proliferation, tumorigenesis, and metastasis in breast cancer cells (15,16). Consistent with this observation, deletion of PREX1 expression in mice results in resistance to melanoma metastasis (11). Expression of PREX1 in human tumors transplanted into mice inversely correlates with increased tumor progression and poor survival (15). Additional research studies suggest that PREX Rac-GEF activity is enhanced by phosphorylation in response to growth factors or hormones, and may require coincident dephosphorylation of two PH domain serine residues. The upstream kinases and precise regulatory mechanism remains elusive (15,17).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated N-Cadherin (D4R1H) XP® Rabbit mAb #13116.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Cadherins are a superfamily of transmembrane glycoproteins that contain cadherin repeats of approximately 100 residues in their extracellular domain. Cadherins mediate calcium-dependent cell-cell adhesion and play critical roles in normal tissue development (1). The classic cadherin subfamily includes N-, P-, R-, B-, and E-cadherins, as well as about ten other members that are found in adherens junctions, a cellular structure near the apical surface of polarized epithelial cells. The cytoplasmic domain of classical cadherins interacts with β-catenin, γ-catenin (also called plakoglobin), and p120 catenin. β-catenin and γ-catenin associate with α-catenin, which links the cadherin-catenin complex to the actin cytoskeleton (1,2). While β- and γ-catenin play structural roles in the junctional complex, p120 regulates cadherin adhesive activity and trafficking (1-4). Investigators consider E-cadherin an active suppressor of invasion and growth of many epithelial cancers (1-3). Research studies indicate that cancer cells have upregulated N-cadherin in addition to loss of E-cadherin. This change in cadherin expression is called the "cadherin switch." N-cadherin cooperates with the FGF receptor, leading to overexpression of MMP-9 and cellular invasion (3). Research studies have shown that in endothelial cells, VE-cadherin signaling, expression, and localization correlate with vascular permeability and tumor angiogenesis (5,6). Investigators have also demonstrated that expression of P-cadherin, which is normally present in epithelial cells, is also altered in ovarian and other human cancers (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Integrins are α/β heterodimeric cell surface receptors that play a pivotal role in cell adhesion and migration, as well as in growth and survival (1,2). The integrin family contains at least 18 α and 8 β subunits that form 24 known integrins with distinct tissue distribution and overlapping ligand specificities (3). Integrins not only transmit signals to cells in response to the extracellular environment (outside-in signaling), but also sense intracellular cues to alter their interaction with the extracellular environment (inside-out signaling) (1,2).The β1 subfamily includes 12 distinct integrin proteins that bind to different extracellular matrix molecules (4). Control of extracellular integrin binding influences cell adhesion and migration, while intracellular signaling messages relayed by the β1 cytoplasmic tail help to regulate cell proliferation, cytoskeletal reorganization, and gene expression (4). Research studies have implicated β1 integrin in various activities including embryonic development, blood vessel, skin, bone, and muscle formation, as well as tumor metastasis and angiogenesis (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The serum response factor (SRF) is a ubiquitous protein that modulates transcription of genes containing serum response elements (SRE) at their promoters. SRF regulates cellular processes such as cell proliferation and cytoskeletal signaling in conjunction with a variety of cofactors (1-3).Suppressor of cancer cell invasion (SCAI) is a highly conserved transcriptional cofactor that inhibits the activity of myocardin-related transcription factor (MRTF) family members MAL (MRTF-A), myocardin and OTT-MAL (4,5). SCAI controls the expression of integrin β1 and regulates cell migration and invasion in vitro (4). SCAI has also been shown to play a role in transcriptional regulation in neurons by regulating dendritic morphology through inhibition of the megakaryoblastic leukemia (MKL) family of transcription cofactors (6). Research studies have implicated SCAI in the regulation of the epithelial-to-mesenchymal transition (EMT) as well as in renal fibrosis (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Cadherins are a superfamily of transmembrane glycoproteins that contain cadherin repeats of approximately 100 residues in their extracellular domain. Cadherins mediate calcium-dependent cell-cell adhesion and play critical roles in normal tissue development (1). The classic cadherin subfamily includes N-, P-, R-, B-, and E-cadherins, as well as about ten other members that are found in adherens junctions, a cellular structure near the apical surface of polarized epithelial cells. The cytoplasmic domain of classical cadherins interacts with β-catenin, γ-catenin (also called plakoglobin), and p120 catenin. β-catenin and γ-catenin associate with α-catenin, which links the cadherin-catenin complex to the actin cytoskeleton (1,2). While β- and γ-catenin play structural roles in the junctional complex, p120 regulates cadherin adhesive activity and trafficking (1-4). Investigators consider E-cadherin an active suppressor of invasion and growth of many epithelial cancers (1-3). Research studies indicate that cancer cells have upregulated N-cadherin in addition to loss of E-cadherin. This change in cadherin expression is called the "cadherin switch." N-cadherin cooperates with the FGF receptor, leading to overexpression of MMP-9 and cellular invasion (3). Research studies have shown that in endothelial cells, VE-cadherin signaling, expression, and localization correlate with vascular permeability and tumor angiogenesis (5,6). Investigators have also demonstrated that expression of P-cadherin, which is normally present in epithelial cells, is also altered in ovarian and other human cancers (7,8).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated BCL6 (D4I2V) XP® Rabbit mAb #14895.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Chromosomal translocations result in misregulation of the proto-oncogene BCL6 in patients with B cell-derived non-Hodgkin's lymphoma (1). The BCL6 gene is selectively expressed in mature B cells and encodes a nuclear phosphoprotein that belongs to the BTB/POZ zinc finger family of transcription factors (2,3). BCL6 protein can bind to target DNA sequences of Stat6 and, analogous to Stat6, modulate the expression of interleukin-4-induced genes (4). Furthermore, BCL6 restrains p53-dependent senescence, making BCL6-active tumors functionally p53-negative (5). The mitogen-activated protein kinases, Erk1 and Erk2, but not JNK, phosphorylate BCL6 at multiple sites. Phosphorylation of BCL6 at Ser333 and Ser343 results in degradation of BCL6 by the ubiquitin/proteasome pathway in B cells (6,7). In addition, BCL6 is acetylated and its transcriptional repressor function is inhibited by the transcriptional co-activator p300 (8).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin)

Background: Chromosomal translocations result in misregulation of the proto-oncogene BCL6 in patients with B cell-derived non-Hodgkin's lymphoma (1). The BCL6 gene is selectively expressed in mature B cells and encodes a nuclear phosphoprotein that belongs to the BTB/POZ zinc finger family of transcription factors (2,3). BCL6 protein can bind to target DNA sequences of Stat6 and, analogous to Stat6, modulate the expression of interleukin-4-induced genes (4). Furthermore, BCL6 restrains p53-dependent senescence, making BCL6-active tumors functionally p53-negative (5). The mitogen-activated protein kinases, Erk1 and Erk2, but not JNK, phosphorylate BCL6 at multiple sites. Phosphorylation of BCL6 at Ser333 and Ser343 results in degradation of BCL6 by the ubiquitin/proteasome pathway in B cells (6,7). In addition, BCL6 is acetylated and its transcriptional repressor function is inhibited by the transcriptional co-activator p300 (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: Chromosomal translocations result in misregulation of the proto-oncogene BCL6 in patients with B cell-derived non-Hodgkin's lymphoma (1). The BCL6 gene is selectively expressed in mature B cells and encodes a nuclear phosphoprotein that belongs to the BTB/POZ zinc finger family of transcription factors (2,3). BCL6 protein can bind to target DNA sequences of Stat6 and, analogous to Stat6, modulate the expression of interleukin-4-induced genes (4). Furthermore, BCL6 restrains p53-dependent senescence, making BCL6-active tumors functionally p53-negative (5). The mitogen-activated protein kinases, Erk1 and Erk2, but not JNK, phosphorylate BCL6 at multiple sites. Phosphorylation of BCL6 at Ser333 and Ser343 results in degradation of BCL6 by the ubiquitin/proteasome pathway in B cells (6,7). In addition, BCL6 is acetylated and its transcriptional repressor function is inhibited by the transcriptional co-activator p300 (8).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated N-Cadherin (D4R1H) XP® Rabbit mAb #13116.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Cadherins are a superfamily of transmembrane glycoproteins that contain cadherin repeats of approximately 100 residues in their extracellular domain. Cadherins mediate calcium-dependent cell-cell adhesion and play critical roles in normal tissue development (1). The classic cadherin subfamily includes N-, P-, R-, B-, and E-cadherins, as well as about ten other members that are found in adherens junctions, a cellular structure near the apical surface of polarized epithelial cells. The cytoplasmic domain of classical cadherins interacts with β-catenin, γ-catenin (also called plakoglobin), and p120 catenin. β-catenin and γ-catenin associate with α-catenin, which links the cadherin-catenin complex to the actin cytoskeleton (1,2). While β- and γ-catenin play structural roles in the junctional complex, p120 regulates cadherin adhesive activity and trafficking (1-4). Investigators consider E-cadherin an active suppressor of invasion and growth of many epithelial cancers (1-3). Research studies indicate that cancer cells have upregulated N-cadherin in addition to loss of E-cadherin. This change in cadherin expression is called the "cadherin switch." N-cadherin cooperates with the FGF receptor, leading to overexpression of MMP-9 and cellular invasion (3). Research studies have shown that in endothelial cells, VE-cadherin signaling, expression, and localization correlate with vascular permeability and tumor angiogenesis (5,6). Investigators have also demonstrated that expression of P-cadherin, which is normally present in epithelial cells, is also altered in ovarian and other human cancers (7,8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Vav proteins belong to the Dbl family of guanine nucleotide exchange factors (GEFs) for Rho/Rac small GTPases. The three identified mammalian Vav proteins (Vav1, Vav2 and Vav3) differ in their expression. Vav1 is expressed only in hematopoietic cells and is involved in the formation of the immune synapse. Vav2 and Vav3 are more ubiquitously expressed. Vav proteins contain the Dbl homology domain, which confers GEF activity, as well as protein interaction domains that allow them to function in pathways regulating actin cytoskeleton organization (reviewed in 1). Phosphorylation stimulates the GEF activity of Vav protein towards Rho/Rac (2,3).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Cadherins are a superfamily of transmembrane glycoproteins that contain cadherin repeats of approximately 100 residues in their extracellular domain. Cadherins mediate calcium-dependent cell-cell adhesion and play critical roles in normal tissue development (1). The classic cadherin subfamily includes N-, P-, R-, B-, and E-cadherins, as well as about ten other members that are found in adherens junctions, a cellular structure near the apical surface of polarized epithelial cells. The cytoplasmic domain of classical cadherins interacts with β-catenin, γ-catenin (also called plakoglobin), and p120 catenin. β-catenin and γ-catenin associate with α-catenin, which links the cadherin-catenin complex to the actin cytoskeleton (1,2). While β- and γ-catenin play structural roles in the junctional complex, p120 regulates cadherin adhesive activity and trafficking (1-4). Investigators consider E-cadherin an active suppressor of invasion and growth of many epithelial cancers (1-3). Research studies indicate that cancer cells have upregulated N-cadherin in addition to loss of E-cadherin. This change in cadherin expression is called the "cadherin switch." N-cadherin cooperates with the FGF receptor, leading to overexpression of MMP-9 and cellular invasion (3). Research studies have shown that in endothelial cells, VE-cadherin signaling, expression, and localization correlate with vascular permeability and tumor angiogenesis (5,6). Investigators have also demonstrated that expression of P-cadherin, which is normally present in epithelial cells, is also altered in ovarian and other human cancers (7,8).