Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Respiratory Tube Development

Also showing Monoclonal Antibody Western Blotting Respiratory Tube Development

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: TRAFs (TNF receptor-associated factors) are a family of multifunctional adaptor proteins that bind to surface receptors and recruit additional proteins to form multiprotein signaling complexes capable of promoting cellular responses (1-3). Members of the TRAF family share a common carboxy-terminal "TRAF domain", which mediates interactions with associated proteins; many also contain amino-terminal Zinc/RING finger motifs. The first TRAFs identified, TRAF1 and TRAF2, were found by virtue of their interactions with the cytoplasmic domain of TNF-receptor 2 (TNFRII) (4). The six known TRAFs (TRAF1-6) act as adaptor proteins for a wide range of cell surface receptors and participate in the regulation of cell survival, proliferation, differentiation, and stress responses.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The methylation state of lysine residues in histone proteins is a major determinant of the formation of active and inactive regions of the genome and is crucial for proper programming of the genome during development (1,2). Jumonji C (JmjC) domain-containing proteins represent the largest class of potential histone demethylase proteins (3). The JmjC domain can catalyze the demethylation of mono-, di-, and tri-methyl lysine residues via an oxidative reaction that requires iron and α-ketoglutarate (3). Based on homology, both humans and mice contain at least 30 such proteins, which can be divided into 7 separate families (3). The three members of the UTX/UTY family include the ubiquitously transcribed X chromosome tetratricopeptide repeat protein (UTX), the ubiquitously transcribed Y chromosome tetratricopeptide repeat protein (UTY) and JmjC domain-containing protein 3 (JMJD3) (3). This family of proteins has been shown to demethylate both di- and tri-methyl histone H3 Lys 27 (4-8). The UTX gene escapes X inactivation in females and is ubiquitously expressed (9). UTX functions to regulate HOX gene expression during development (4-6). JMJD3 functions to regulate gene expression in macrophages responding to various inflammatory stimuli and has been shown to be upregulated in prostate cancer (7,8). Both UTX and JMJD3 interact with mixed-lineage leukemia (MLL) complexes 2 and 3, both of which have been shown to methylate histone H3 at Lys4 (6,7). The UTY gene is expressed in most tissues in the male mouse (10).