Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Sulfur Metabolic Process

Also showing Monoclonal Antibody Western Blotting Sulfur Metabolic Process

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Paired box (PAX) proteins are a family of transcription factors that play important and diverse roles in animal development (1). Nine PAX proteins (PAX1-9) have been described in humans and other mammals. They are defined by the presence of an amino-terminal "paired" domain, consisting of two helix-turn-helix motifs, with DNA binding activity (2). PAX proteins are classified into four structurally distinct subgroups (I-IV) based on the absence or presence of a carboxy-terminal homeodomain and a central octapeptide region. Subgroup I (PAX1 and 9) contains the octapeptide but lacks the homeodomain; subgroup II (PAX2, 5, and 8) contains the octapeptide and a truncated homeodomain; subgroup III (PAX3 and 7) contains the octapeptide and a complete homeodomain; and subgroup IV (PAX4 and 6) contains a complete homeodomain but lacks the octapeptide region (2). PAX proteins play critically important roles in development by regulating transcriptional networks responsible for embryonic patterning and organogenesis (3); a subset of PAX proteins also maintain functional importance during postnatal development (4). Research studies have implicated genetic mutations that result in aberrant expression of PAX genes in a number of cancer subtypes (1-3), with members of subgroups II and III identified as potential mediators of tumor progression (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Cystathionine γ-lyase (CGL) is an enzyme in the transsulfuration pathway, a route in the metabolism of sulfur-containing amino acids (1). This enzyme regulates local vasodilation and blood pressure by generating hydrogen sulfide (H2S) as a physiological signaling molecule (2). A rodent model of sleep apnea showed that H2S production by cystathionine γ-lyase in the carotid body triggers hypertension in rodents during intermittent hypoxia, suggesting that inhibition of this enzyme may prevent the hypertension associated with sleep apnea (3). In addition, dietary restriction of sulfur-containing amino acids upregulates hepatic cystathionine γ-lyase expression in mice, leading to elevated production of H2S and protection from hepatic ischemia perfusion injury, indicating that this enzyme is critical for the benefits of dietary restriction (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Cystathionine γ-lyase (CGL) is an enzyme in the transsulfuration pathway, a route in the metabolism of sulfur-containing amino acids (1). This enzyme regulates local vasodilation and blood pressure by generating hydrogen sulfide (H2S) as a physiological signaling molecule (2). A rodent model of sleep apnea showed that H2S production by cystathionine γ-lyase in the carotid body triggers hypertension in rodents during intermittent hypoxia, suggesting that inhibition of this enzyme may prevent the hypertension associated with sleep apnea (3). In addition, dietary restriction of sulfur-containing amino acids upregulates hepatic cystathionine γ-lyase expression in mice, leading to elevated production of H2S and protection from hepatic ischemia perfusion injury, indicating that this enzyme is critical for the benefits of dietary restriction (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: MTAP is an enzyme that is essential for the salvage pathway for both adenine and methionine synthesis. MTAP catalyzes the cleavage of 5’-methylthioadenosine into adenine and 5-methylthio-D-ribose-1-phosphate. Adenine is then used to generate AMP whereas 5-methylthio-D-ribose-1-phosphate is converted into methionine (1,2). MTAP is expressed in all normal cells and tissues, although frequently lost in different human tumors including pancreatic adenocarcinoma, neuroendocrine tumors, non-small cell lung carcinoma and breast carcinoma. MTAP is usually codeleted with p16 (cdkN2a/ARF) (3-5). MTAP overexpression in breast cancer cells inhibits their ability to form colonies in soft agar, thereby implicating its function as a tumor suppressor (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Glutamate oxaloacetate transaminase 1 (GOT1) catalyzes the interconversion of aspartate and oxaloacetate (1). The increased transamination primarily catalyzed by GOT1 leads to elevated levels of 2-hydroxyglutarate, which promotes methylation of the Foxp3 gene locus, inhibits Foxp3 expression and activates T helper 17 (TH17) cell differentiation (2). In addition, GOT1 is critical to the survival of cells with electron transport chain inhibition by generating aspartate, a metabolite determining the proliferation of these cells (3-4). Studies also show that GOT1 plays a key role in the noncanonical glutamine pathway that supports liver tumorigenesis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: One-carbon metabolism includes enzymatic reactions involving the transfer of one-carbon groups mediated by folate cofactor. The activated one-carbon groups are used by various metabolic pathways, including purine synthesis, thymidine synthesis, and remethylation of homocysteine to methionine (1). One of the enzymes in one-carbon metabolism, methionine synthase, catalyzes the conversion of 5-methyltetrahydrofolate and homocysteine to tetrahydrofolate and methionine. Methionine is further converted to S-adenosylmethionine (SAM) (1, 2). S-adenosylmethionine (SAM) is a major reactive methyl carrier and plays a critical role in epigenetic regulation (2, 3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Cystathionine beta-synthase (CBS) is a key enzyme involved in sulfur amino acid metabolism because it catalyzes the formation of cystathionine from serine and homocysteine (1,2). The CBS protein contains a heme-binding domain that modulates enzyme activity by sensing redox changes or carbon monoxide binding (1). S-adenosylmethionine binds the carboxyl-terminal CBS domain to allosterically regulate CBS catalytic activity (3,4). In addition to catalyzing cystathionine formation, CBS also catalyzes the generation of hydrogen sulfide, a neuromodulator in the brain, through alternative reactions (5,6). Mutations in the corresponding CBS gene result in homocystinuria, an autosomal recessive disorder characterized by abnormal sulfur metabolism, mental retardation, eye anomalies, and vascular disease (7).