Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Western Blotting Endosome to Golgi

Also showing Monoclonal Antibody Western Blotting Golgi to Endosome Transport

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Vesicle transport through interaction with t-SNAREs homolog 1 (Vti1) has two protein members, Vti1a and Vti1b. Human Vti1 was first identified as a homolog of the yeast v-SNARE Vti1p and was able to functionally rescue the phenotype of Vti1p-deficient yeast (1). The mammalian proteins Vti1a and Vti1b exhibit distinct but overlapping localization. Vti1a and Vti1b are both localized in the trans-Golgi network, with Vti1a also found in the Golgi apparatus and Vti1b in endosomes (2). Vti1 proteins have been implicated in a number of protein-protein interactions with partners such as VAMP4, syntaxin 6, syntaxin 8, syntaxin 16, and synaptobrevin (2-4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Syntaxin 6 is a ubiquitously expressed S25C family member of the SNARE proteins (1,2). The protein has an amino-terminal H1 domain followed by an H2 SNARE domain and a carboxy-terminal membrane anchor (3). Syntaxin 6 protein is localized to the trans-Golgi and within endosomes and regulates membrane trafficking by partnering with a variety of other SNARE proteins (3-5). Depending on cell type and SNARE parter, syntaxin 6 is involved in the regulation of GLUT4 trafficking, neutrophil exocytosis and granule secretion (6-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Rab7 and Rab9 are members of the Ras superfamily of small Rab GTPases (1). Both proteins are located in late endosomes, but exert different functions. Rab7 associates with the RIPL effector protein to control membrane trafficking from early to late endosome and to lysosomes (2,3). Rab7 also helps to regulate growth receptor endocytic trafficking and degradation (3,4), and maturation of phagosome and autophagic vacuoles (4-6). Rab9 interacts with its effector proteins p40 and TIP47 (7,8) to promote the MPR (mannose 6-phosphate receptor)-associated lysosomal enzyme transport between late endosomes and the trans Golgi network (9,10).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Rab7 and Rab9 are members of the Ras superfamily of small Rab GTPases (1). Both proteins are located in late endosomes, but exert different functions. Rab7 associates with the RIPL effector protein to control membrane trafficking from early to late endosome and to lysosomes (2,3). Rab7 also helps to regulate growth receptor endocytic trafficking and degradation (3,4), and maturation of phagosome and autophagic vacuoles (4-6). Rab9 interacts with its effector proteins p40 and TIP47 (7,8) to promote the MPR (mannose 6-phosphate receptor)-associated lysosomal enzyme transport between late endosomes and the trans Golgi network (9,10).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Rab7 (D95F2) XP® Rabbit mAb #9367.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rab7 and Rab9 are members of the Ras superfamily of small Rab GTPases (1). Both proteins are located in late endosomes, but exert different functions. Rab7 associates with the RIPL effector protein to control membrane trafficking from early to late endosome and to lysosomes (2,3). Rab7 also helps to regulate growth receptor endocytic trafficking and degradation (3,4), and maturation of phagosome and autophagic vacuoles (4-6). Rab9 interacts with its effector proteins p40 and TIP47 (7,8) to promote the MPR (mannose 6-phosphate receptor)-associated lysosomal enzyme transport between late endosomes and the trans Golgi network (9,10).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Rab7 and Rab9 are members of the Ras superfamily of small Rab GTPases (1). Both proteins are located in late endosomes, but exert different functions. Rab7 associates with the RIPL effector protein to control membrane trafficking from early to late endosome and to lysosomes (2,3). Rab7 also helps to regulate growth receptor endocytic trafficking and degradation (3,4), and maturation of phagosome and autophagic vacuoles (4-6). Rab9 interacts with its effector proteins p40 and TIP47 (7,8) to promote the MPR (mannose 6-phosphate receptor)-associated lysosomal enzyme transport between late endosomes and the trans Golgi network (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Retromer is a heteropentameric protein complex that consists of two protein compounds, a sortin-nexin dimer and a trimeric VPS26-VPS29-VPS35 protein subcomplex. The retromer complex associates with endosomes at their cytosolic side to mediate retrograde transport of transmembrane proteins from endosomes to the trans-Golgi network (1-3). Vacuolar protein sorting-associated protein 29 (VPS29) is considered a cryptic metallophosphoesterase, as it contains a conserved metallophosphoesterase-fold that includes a phenylalanine in place of an essential histidine residue within the active site (4). While VPS29 is capable of binding metal ions, it does so with low affinity and exhibits no enzymatic activity. Instead, VPS29 serves as a scaffold protein that interacts with the carboxy-terminal region of VPS35 and is essential for association of the retromer with other endosomal transport proteins (5).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Proteins in the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex are integral membrane proteins involved in vesicle transport and membrane fusion by pairing of vesicular SNAREs (v-SNAREs) with cognate target SNAREs (t-SNAREs) (reviewed in 1,2). Vesicle associated membrane protein 3 (VAMP3), also known as cellubrevin, has a broad tissue distribution and localizes to endosomal compartments (3). VAMP3 interacts with the t-SNAREs syntaxin1, syntaxin4, SNAP23, and SNAP25 (4,5). Research studies indicate that VAMP3 is involved in transferrin receptor recycling to the plasma membrane (6) and in T-cell receptor recycling to immunological synapses (7). Inhibition of VAMP3 with tetanus toxin impairs membrane trafficking during cell migration (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Rab7 and Rab9 are members of the Ras superfamily of small Rab GTPases (1). Both proteins are located in late endosomes, but exert different functions. Rab7 associates with the RIPL effector protein to control membrane trafficking from early to late endosome and to lysosomes (2,3). Rab7 also helps to regulate growth receptor endocytic trafficking and degradation (3,4), and maturation of phagosome and autophagic vacuoles (4-6). Rab9 interacts with its effector proteins p40 and TIP47 (7,8) to promote the MPR (mannose 6-phosphate receptor)-associated lysosomal enzyme transport between late endosomes and the trans Golgi network (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Tripartite motif containing protein 27 (TRIM27, RFP) is a member of the tripartite motif (TRIM) family whose members contain a RING domain, a B-box, and a coiled-coil region (together called RBCC). TRIM27 was originally discovered as part of an oncogenic DNA rearrangement resulting in a fusion of the amino terminal RBCC region of TRIM27 with the carboxyl terminal kinase domain of the receptor tyrosine kinase Ret (1). Overexpression of TRIM27 induces JNK and p38 MAPK activation as well as apoptosis (2). TRIM27 has been found to have pleiotropic effects including transcriptional repression (3,4), and E3 ligase activity for ubiquitin (5-7), and SUMO (8). TRIM27 was originally found to interact with Enhancer of Polycomb (EPC) and function as a transcriptional repressor (3). Subsequent studies have identified ubiquitin E3 ligase activity in TRIM27 as well as other members of the TRIM family (reviewed in 9). Potential substrates of TRIM27-mediated ubiquitination include class II PI3K-C2β, NOD2, and WASH. Elevated expression of TRIM27 has been observed in several types of cancer, where in some cases it may be a predictor of poor prognosis (10-13).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Cytoplasmic dynein is a multi-subunit motor complex that regulates microtubule organization as well as the transport and positioning of organelles. Dynactin is a multi-subunit dynein-activating complex, which regulates the interaction of the dynein motor with various cellular cargoes, and enhances dynein’s processivity. p150Glued/DCTN1/Dynactin 1 is the largest subunit of the dynactin complex (1-3). In mitosis, cytoplasmic dynein regulates spindle organization, chromosome movement and centrosome separation (4). The dynactin subunit p150Glued is phosphorylated at serine 19 by the mitotic kinase aurora A during anaphase, and this phosphorylation is required for the appropriate regulation of spindle assembly (5). In neurons, axonal transport is important for cellular function and survival. Dysfunction and mutations in dynein and dynactin subunits, including p150Glued, have been linked to human neurodegenerative diseases such as Alzheimer’s Disease (6-7), Perry Syndrome (8) and ALS (9).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: JNK-Interacting Proteins (JIPs), as their name implies, coordinate c-Jun N-terminal Kinase (JNK) signaling by acting as scaffolds for components of the JNK signaling cascade (1). JIPs localize and promote JNK activation in response to stress by amalgamating and co-localizing upstream kinases and downstream effectors in the stress-kinase pathway analogous to the mechanism by which AKAPs orchestrate PKA signaling. JIPs bind to an array of MAPKs and other signaling proteins, including the mixed-lineage kinases, MKK7, p38α MAPK, JNK1-3, Max, Myc, NF-κB, LRRK2, and others (1-4).There are four known JIPs, JIP1-4, of which JIP1 and JIP2 share extensive sequence homology and domain structure. JIP1 and JIP2 are mainly expressed in neurons, testis and in β pancreatic cells, where they have been implicated in cellular responses to metabolic stress, the development of diabetes, and post-traumatic brain damage (5-7). Although architecturally distinct from JIP1 and JIP2, JIP3 and JIP4 share some overlapping functions and are more broadly expressed. JIP4, encoded by the SPAG9 (sperm-associated antigen-9) gene, is a homooligomer that binds to and coordinates the activation of numerous components of the stress-activated kinase cascade including MEK4, MEKK3, p38α MAPK, and JNK1-3 (3,8). However, unlike the other JIP members, JIP4 does not appear to activate JNK directly, instead favoring stimulation of p38 MAPK signaling events in response to cellular stress (3,9).In addition to mediating stress responses, JIP4 (or its splice variant, JLP) has also been shown to interact with ARF6 and PIKfyve, thus regulating microtubule-based endosomal trafficking (10,11). There are extensive reports indicating that JIP4 is phosphorylated in response to stress (UV damage etc.) but it is unclear what effect, if any, this has on its function, localization, or binding properties (12-15).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Rab10 is a member of the Ras superfamily of small Rab GTPases (1) that interacts with Mss4, myosin V (Va, Vb and Vc) and GDI as it helps mediate sorting among cellular endosomes (2-4). Mutation analysis and GFP-fusion protein expression of Rab10 in MDCK cells determined that Rab10 plays a regulatory role in membrane protein transport between early endosomes and basolateral compartments (5,6). Rab10 associates with the GLUT4 complex as a target for AS160 and is required for insulin-stimulated GLUT4 translocation in adipocytes (7,8).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Huntington's Disease (HD) is a fatal neurodegenerative disorder characterized by psychiatric, cognitive, and motor dysfunction. Neuropathology of HD involves specific neuronal subpopulations: GABA-ergic neurons of the striatum and neurons within the cerebral cortex selectively degenerate (1,2). The genetic analysis of HD has been the flagship study of inherited neurological diseases from initial chromosomal localization to identification of the gene.Huntingtin is a large (340-350 kD) cytosolic protein that may be involved in a number of cellular functions such as transcription, gastrulation, neurogenesis, neurotransmission, axonal transport, neural positioning, and apoptosis (2,3). The HD gene from unaffected individuals contains between 6 and 34 CAG trinucleotide repeats, with expansion beyond this range causing the onset of disease symptoms. A strong inverse correlation exists between the age of onset in patients and the number of huntingtin gene CAG repeats encoding a stretch of polyglutamine peptides (1,2). The huntingtin protein undergoes numerous post-translational modifications including phosphorylation, ubiquitination, sumoylation, palmitoylation, and cleavage (2). Phosphorylation of Ser421 by Akt can partially counteract the toxicity that results from the expanded polyglutamine tract. Varying Akt expression in the brain correlates with regional differences in huntingtin protein phosphorylation; this pattern inversely correlates with the regions that are most affected by degeneration in diseased brain (2). A key step in the disease is the proteolytic cleavage of huntingtin protein into amino-terminal fragments that contain expanded glutamine repeats and translocate into the nucleus. Caspase mediated cleavage of huntingtin at Asp513 is associated with increased polyglutamine aggregate formation and toxicity. Phosphorylation of Ser434 by CDK5 protects against cleavage (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Proteins in the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex are integral membrane proteins involved in vesicle transport and membrane fusion that pair vesicular SNAREs (v-SNAREs) with cognate target SNARE (t-SNARE) proteins (reviewed in 1,2). Vesicle-associated membrane protein 7 (VAMP7), or tetanus neurotoxin-insensitive VAMP (TI-VAMP), is a widely expressed v-SNARE involved in exocytosis of granules and synaptic vesicles in various cell types, membrane remodeling, neurite outgrowth, lysosomal secretion, and autophagosome maturation (3). Activity of VAMP7 can be regulated by c-Src-mediated tyrosine phosphorylation, which activates VAMP7-mediated exocytosis (4). VAMP7 activity can also be regulated through interaction with the guanine nucleotide exchange factor Varp (5,6). Several research studies indicate that VAMP7 plays an important role in neurite outgrowth as well as potential neurological activities, including anxiety (7-9). VAMP7 also appears to have a key role in T-cell activation by facilitating the recruitment of vesicular Lat to the immunological synapse (10). The VAMP7 protein interacts with ATG16L, a component of the ATG5-ATG12 complex, and regulates autophagosome maturation through homotypic fusion of ATG16L1 vesicles (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) is a ubiquitously expressed, multidomain-containing protein that is tyrosine phosphorylated upon activation of multiple receptor tyrosine kinases (1). HRS contains a proline-rich region, which may mediate interactions with SH3 domain-containing proteins (1). Research studies have also demonstrated that HRS possesses a phosphatidylinositol 3-phosphate-binding FYVE-type zinc finger domain and a coiled-coil domain that target it to membranes of the endosomal compartment (2-4). HRS also possesses a ubiquitin-interacting motif (UIM) that binds ubiquitinated membrane proteins and, in conjunction with Eps15 and STAM proteins of the ESCRT-0 complex, facilitates their sorting through the endosomal compartment for eventual degradation in the lysosome (5-8). Research studies demonstrate that phosphorylation and ubiquitination of HRS play a role in EGFR intracellular trafficking and degradation (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Eps15 (EGFR pathway substrate 15) was originally discovered as a substrate for the kinase activity of EGFR (1). Eps15 has a tripartite structure comprising an amino terminal portion, which contains three evolutionarily conserved EH protein-protein interaction domains, a central putative coiled-coil region required for constitutive oligmerization, and a carboxy terminal domain containing multiple copies of the amino acid triplet Asp-Pro-Phe that constitute the AP2 binding domain. The carboxy terminal domain also contains two ubiquitin interaction motifs (UIMs), the last of which is indespensible for Eps15 binding to ubiquitin (1). Several lines of evidence support a role for Eps15 in clathrin-mediated endocytosis, including the endocytosis of synaptic vesicles. Eps15 binds to AP2 as well as other proteins involved in endocytosis and/or synaptic vesicle recycling, such as synaptojanin1 and epsin. Furthermore, Eps15 colocalizes with markers of the plasma membrane clathrin-coated pits and vesicles (2). Eps15 regulates the endosomal trafficking of c-Met (3) and EGFR (4), possibly by recruiting the ubiquitinated receptors to the rims of clathrin-coated pits through interaction between the ubiquitin tag and its UIMs.The EPS15 gene yields two isoforms that are believed to reside in distinct subcellular locations and are thus implicated in different facets of endosomal trafficking (5). Human EPS15 has been mapped to chromosome 1p31-p32, a region displaying several nonrandom chromosomal abnormalities, including deletions in neuroblastoma and translocations in acute lymphoblastic and myeloid leukemias. Research has shown two translocations t(1;11)(p32;q11) are found in rare cases of myeloid leukemia where the Eps15 gene was fused to the HRX gene, resulting in two reciprocal fusion genes (6).