Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Western Blotting Heparin Binding

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: SET7/SET9 is a member of the SET domain-containing family, and can specifically methylate Lys4 on histone H3 (1). Like most other lysine-directed histone methyltransferases, it contains a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste and Trithorax proteins. Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Methylation of histone H3 Lys4 enhances transcriptional activation by coordinating the recruitment of BPTF, a component of the NURF chromatin remodeling complex, and WDR5, a component of multiple histone methyltransferase complexes (4,5). In addition, methylation of lysine 4 blocks transcriptional repression by inhibiting the binding of the NURD histone deacetylation complex to the amino-terminal tail of histone H3 and interfering with SUV39H1-mediated methylation of histone H3 Lys9 (1). SET7/SET9 is highly active on free histone H3, but only very weakly methylates H3 within nucleosomes (1). Besides histones, SET7/SET9 also methylates Lys189 of the TAF10, a member of the TFIID transcription factor complex, and Lys372 of the p53 tumor suppressor protein (6,7). Methylation of TAF10 stimulates transcription in a promoter-specific manner by increasing the affinity of TAF10 for RNA polymerase II, which may potentiate pre-initiation complex formation (6). Methylation of p53 at Lys372 increases protein stability and leads to upregulation of target genes such as p21. Thus the loss of SET7/SET9 may represent another mechanism for the inactivation of p53 in human cancers (7).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Cysteine-rich protein 61 (CYR61, CCN1) is a secreted, matrix-associated protein belonging to the CCN family, a protein group characterized primarily by its high cysteine content (1). CYR61 regulates diverse cellular events including cell proliferation, differentiation, angiogenesis, and extracellular matrix formation. Research studies have implicated CYR61 in the development or progression of various cancers, including breast, prostate, lung, and hepatocellular carcinoma (1-4). Notably, its role in promoting cancer progression appears to be context-dependent. For example, investigators have shown that overexpression of CYR61 was positively associated with invasiveness of breast cancer cell lines (2), whereas in primary prostate tumors, expression levels were inversely correlated with tumor aggressiveness (3). In additional research studies of hepatocellular carcinoma, where CYR61 expression was positively associated with cancer progression, CYR61 was shown to be transcriptionally regulated by the Wnt/β-catenin signaling pathway (1).

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Fibroblast growth factors (FGFs) produce mitogenic and angiogenic effects in target cells by signaling through cell surface receptor tyrosine kinases. There are four members of the FGF receptor family: FGFR1 (flg), FGFR2 (bek, KGFR), FGFR3, and FGFR4. Each receptor contains an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic kinase domain (1). Following ligand binding and dimerization, the receptors are phosphorylated at specific tyrosine residues (2). Seven tyrosine residues in the cytoplasmic tail of FGFR1 can be phosphorylated: Tyr463, 583, 585, 653, 654, 730, and 766. Tyr653 and Tyr654 are important for catalytic activity of activated FGFR and are essential for signaling (3). The other phosphorylated tyrosine residues may provide docking sites for downstream signaling components such as Crk and PLCγ (4,5).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Fibroblast growth factors (FGFs) produce mitogenic and angiogenic effects in target cells by signaling through cell surface receptor tyrosine kinases. There are four members of the FGF receptor family: FGFR1 (flg), FGFR2 (bek, KGFR), FGFR3, and FGFR4. Each receptor contains an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic kinase domain (1). Following ligand binding and dimerization, the receptors are phosphorylated at specific tyrosine residues (2). Seven tyrosine residues in the cytoplasmic tail of FGFR1 can be phosphorylated: Tyr463, 583, 585, 653, 654, 730, and 766. Tyr653 and Tyr654 are important for catalytic activity of activated FGFR and are essential for signaling (3). The other phosphorylated tyrosine residues may provide docking sites for downstream signaling components such as Crk and PLCγ (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Cysteine-rich protein 61 (CYR61, CCN1) is a secreted, matrix-associated protein belonging to the CCN family, a protein group characterized primarily by its high cysteine content (1). CYR61 regulates diverse cellular events including cell proliferation, differentiation, angiogenesis, and extracellular matrix formation. Research studies have implicated CYR61 in the development or progression of various cancers, including breast, prostate, lung, and hepatocellular carcinoma (1-4). Notably, its role in promoting cancer progression appears to be context-dependent. For example, investigators have shown that overexpression of CYR61 was positively associated with invasiveness of breast cancer cell lines (2), whereas in primary prostate tumors, expression levels were inversely correlated with tumor aggressiveness (3). In additional research studies of hepatocellular carcinoma, where CYR61 expression was positively associated with cancer progression, CYR61 was shown to be transcriptionally regulated by the Wnt/β-catenin signaling pathway (1).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Fibroblast growth factors (FGFs) produce mitogenic and angiogenic effects in target cells by signaling through cell surface receptor tyrosine kinases. There are four members of the FGF receptor family: FGFR1 (flg), FGFR2 (bek, KGFR), FGFR3, and FGFR4. Each receptor contains an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic kinase domain (1). Following ligand binding and dimerization, the receptors are phosphorylated at specific tyrosine residues (2). Seven tyrosine residues in the cytoplasmic tail of FGFR1 can be phosphorylated: Tyr463, 583, 585, 653, 654, 730, and 766. Tyr653 and Tyr654 are important for catalytic activity of activated FGFR and are essential for signaling (3). The other phosphorylated tyrosine residues may provide docking sites for downstream signaling components such as Crk and PLCγ (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Fibroblast growth factors are a family of broad-spectrum growth factors influencing a plethora of cellular activities. The interaction of at least 23 ligands, 4 receptors and multiple coreceptors provides a dramatic complexity to a signaling system capable of effecting a multitude of responses (1,2). Basic fibroblast growth factor (bFGF or FGF2), initially identified as a mitogen with prominent angiogenic properties, is now recognized as a multifunctional growth factor (3). It is clear that bFGF produces its biological effects in target cells by signaling through cell-surface FGF receptors. bFGF binds to all four FGF receptors. Ligand binding induces receptor dimerization and autophosphorylation, allowing binding and activation of cytoplasmic downstream target proteins, including FRS-2, PLC and Crk (4,5). The FGF signaling pathway appears to play a significant role not only in normal cell growth regulation but also in tumor development and progression (6).Acidic FGF (aFGF or FGF1) is another extensively investigated protein of the FGF family. aFGF shares 55% DNA sequence homology with bFGF. These two growth factors are ubiquitously expressed and exhibit a wide spectrum of similiar biological activities with quantitative differences likely due to variation in receptor affinity or binding (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Fibroblast growth factors are a family of broad-spectrum growth factors influencing a plethora of cellular activities. The interaction of at least 23 ligands, 4 receptors and multiple coreceptors provides a dramatic complexity to a signaling system capable of effecting a multitude of responses (1,2). Basic fibroblast growth factor (bFGF or FGF2), initially identified as a mitogen with prominent angiogenic properties, is now recognized as a multifunctional growth factor (3). It is clear that bFGF produces its biological effects in target cells by signaling through cell-surface FGF receptors. bFGF binds to all four FGF receptors. Ligand binding induces receptor dimerization and autophosphorylation, allowing binding and activation of cytoplasmic downstream target proteins, including FRS-2, PLC and Crk (4,5). The FGF signaling pathway appears to play a significant role not only in normal cell growth regulation but also in tumor development and progression (6).Acidic FGF (aFGF or FGF1) is another extensively investigated protein of the FGF family. aFGF shares 55% DNA sequence homology with bFGF. These two growth factors are ubiquitously expressed and exhibit a wide spectrum of similiar biological activities with quantitative differences likely due to variation in receptor affinity or binding (7).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated FGF Receptor 1 (D8E4) XP® Rabbit mAb #9740.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Fibroblast growth factors (FGFs) produce mitogenic and angiogenic effects in target cells by signaling through cell surface receptor tyrosine kinases. There are four members of the FGF receptor family: FGFR1 (flg), FGFR2 (bek, KGFR), FGFR3, and FGFR4. Each receptor contains an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic kinase domain (1). Following ligand binding and dimerization, the receptors are phosphorylated at specific tyrosine residues (2). Seven tyrosine residues in the cytoplasmic tail of FGFR1 can be phosphorylated: Tyr463, 583, 585, 653, 654, 730, and 766. Tyr653 and Tyr654 are important for catalytic activity of activated FGFR and are essential for signaling (3). The other phosphorylated tyrosine residues may provide docking sites for downstream signaling components such as Crk and PLCγ (4,5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Fibroblast growth factors (FGFs) produce mitogenic and angiogenic effects in target cells by signaling through cell surface receptor tyrosine kinases. There are four members of the FGF receptor family: FGFR1 (flg), FGFR2 (bek, KGFR), FGFR3, and FGFR4. Each receptor contains an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic kinase domain (1). Following ligand binding and dimerization, the receptors are phosphorylated at specific tyrosine residues (2). Seven tyrosine residues in the cytoplasmic tail of FGFR1 can be phosphorylated: Tyr463, 583, 585, 653, 654, 730, and 766. Tyr653 and Tyr654 are important for catalytic activity of activated FGFR and are essential for signaling (3). The other phosphorylated tyrosine residues may provide docking sites for downstream signaling components such as Crk and PLCγ (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Glycoprotein non-metastatic gene B (GPNMB) is a type I transmembrane glycoprotein over expressed in many types of cancer. The GPNMB glycoprotein is involved in many physiological processes, including mediating transport of late melanosomes to keratinocytes (1), regulating osteoblast and osteoclast differentiation and function (2), stimulating dendritic cell maturation, promoting adhesion of dendritic cells to endothelial cells (3), enhancing autophagosome fusion to lysomes in tissue repair, and regulating degradation of cellular debris (4,5).While typical GPNMB expression is seen in tissues including skin, heart, kidney, lung, liver, and skeletal muscle (3,6), research studies show elevated GPNMB expression often contributes to the metastatic phenotype in numerous cancers (reviewed in 7). GPNMB is typically localized to intracellular compartments in normal cells (1,8), but investigators found it primarily on the cell surface of tumor cells (9,10). Differential localization and expression, and the role of GPNMB as a tumor promoter in many cancer types make this protein a viable therapeutic target (11).The GPNMB ectodomain can be cleaved by matrix metalloproteinases and shed from the cell surface (12). Research studies identify the sheddase ADAM10 as one peptidase responsible for cleavage of the GPNMB ectodomain at the surface of breast cancer cells. Shedded GPNMB ectodomains may promote angiogenesis by inducing endothelial cell migration (13).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Glycoprotein non-metastatic gene B (GPNMB) is a type I transmembrane glycoprotein over expressed in many types of cancer. The GPNMB glycoprotein is involved in many physiological processes, including mediating transport of late melanosomes to keratinocytes (1), regulating osteoblast and osteoclast differentiation and function (2), stimulating dendritic cell maturation, promoting adhesion of dendritic cells to endothelial cells (3), enhancing autophagosome fusion to lysomes in tissue repair, and regulating degradation of cellular debris (4,5).While typical GPNMB expression is seen in tissues including skin, heart, kidney, lung, liver, and skeletal muscle (3,6), research studies show elevated GPNMB expression often contributes to the metastatic phenotype in numerous cancers (reviewed in 7). GPNMB is typically localized to intracellular compartments in normal cells (1,8), but investigators found it primarily on the cell surface of tumor cells (9,10). Differential localization and expression, and the role of GPNMB as a tumor promoter in many cancer types make this protein a viable therapeutic target (11).The GPNMB ectodomain can be cleaved by matrix metalloproteinases and shed from the cell surface (12). Research studies identify the sheddase ADAM10 as one peptidase responsible for cleavage of the GPNMB ectodomain at the surface of breast cancer cells. Shedded GPNMB ectodomains may promote angiogenesis by inducing endothelial cell migration (13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Receptor type protein tyrosine phosphatase F (PTPRF, LAR) is a transmembrane PTP that helps to regulate insulin signaling, cell proliferation and cell migration. The PTPRF protein is composed of an extracellular segment that contains several Ig-like and fibronectin (Fn-III) domains, a transmembrane region and a pair of cytoplasmic phosphatase domains (1,2). Functional studies reveal that the membrane-associated D1 phosphatase domain is responsible for substrate dephosphorylation, while the D2 domain is important for substrate specificity (3). PTPRF negatively regulates insulin signaling through dephosphorylation of insulin receptor and insulin receptor substrate (4). This phosphatase activates the pro-apoptotic DAPK serine/threonine kinase by removing a phosphate at Tyr491/492, while the kinase Src replaces the phosphate to inactivate DAPK at the same time it down regulates PTPRF expression (5). PTPRF is commonly found at focal adhesions where it interacts with liprin, which localizes the phosphatase to the membrane, and the Rac/Rho family GTPase Trio (6). Localization of PTPRF at adherens junctions results in PTPRF modification of β-catenin, which inhibits cell migration by limiting the amount of available cytosolic β-catenin (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Receptor type protein tyrosine phosphatase F (PTPRF, LAR) is a transmembrane PTP that helps to regulate insulin signaling, cell proliferation and cell migration. The PTPRF protein is composed of an extracellular segment that contains several Ig-like and fibronectin (Fn-III) domains, a transmembrane region and a pair of cytoplasmic phosphatase domains (1,2). Functional studies reveal that the membrane-associated D1 phosphatase domain is responsible for substrate dephosphorylation, while the D2 domain is important for substrate specificity (3). PTPRF negatively regulates insulin signaling through dephosphorylation of insulin receptor and insulin receptor substrate (4). This phosphatase activates the pro-apoptotic DAPK serine/threonine kinase by removing a phosphate at Tyr491/492, while the kinase Src replaces the phosphate to inactivate DAPK at the same time it down regulates PTPRF expression (5). PTPRF is commonly found at focal adhesions where it interacts with liprin, which localizes the phosphatase to the membrane, and the Rac/Rho family GTPase Trio (6). Localization of PTPRF at adherens junctions results in PTPRF modification of β-catenin, which inhibits cell migration by limiting the amount of available cytosolic β-catenin (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Bone morphogenetic proteins (BMPs) were first identified as molecules that can induce ectopic bone and cartilage formation (1,2). BMPs belong to the TGF-β superfamily, playing many diverse functions during development (3). BMPs are synthesized as precursor proteins and then processed by cleavage to release the C-terminal mature BMP. BMPs initiate signaling by binding to a receptor complex containing type I and type II serine/threonine receptor kinases that then phosphorylate Smad (mainly Smad1, 5, and 8), resulting in the translocation of Smad into the nucleus. BMP was also reported to activate MAPK pathways in some systems (3,4).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: The matrix metalloproteinases (MMPs) are a family of proteases that target many extracellular proteins including other proteases, growth factors, cell surface receptors, and adhesion molecules (1). Among the family members, MMP-2, MMP-3, MMP-7, and MMP-9 have been characterized as important factors for normal tissue remodeling during embryonic development, wound healing, tumor invasion, angiogenesis, carcinogenesis, and apoptosis (2-4). Research studies have shown that MMP activity correlates with cancer development (2). One mechanism of MMP regulation is transcriptional (5). Once synthesized, MMP exists as a latent proenzyme. Maximum MMP activity requires proteolytic cleavage to generate active MMPs by releasing the inhibitory propeptide domain from the full length protein (5).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Fibroblast growth factors (FGFs) produce mitogenic and angiogenic effects in target cells by signaling through cell surface receptor tyrosine kinases. There are four members of the FGF receptor family: FGFR1 (flg), FGFR2 (bek, KGFR), FGFR3, and FGFR4. Each receptor contains an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic kinase domain (1). Following ligand binding and dimerization, the receptors are phosphorylated at specific tyrosine residues (2). Seven tyrosine residues in the cytoplasmic tail of FGFR1 can be phosphorylated: Tyr463, 583, 585, 653, 654, 730, and 766. Tyr653 and Tyr654 are important for catalytic activity of activated FGFR and are essential for signaling (3). The other phosphorylated tyrosine residues may provide docking sites for downstream signaling components such as Crk and PLCγ (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: A Disintegrin and Metalloprotease with Thrombospondin Motifs (ADAMTS) proteins comprise a large family of secreted zinc metalloproteases that play important roles in various processes, including organogenesis, hemostasis, and angiogenesis (1,2). ADAMTS proteases show structural similarity to ADAM proteases, but are further defined by the presence of repeated carboxy-terminal motifs homologous to the anti-angiogenic type 1 repeats of thrombospondin-1 (3). Functions ascribed to ADAMTS proteases include regulating the extracellular bioavailability of cytokines and growth factors (4, 5), regulating cell adhesion to the extracellular matrix (ECM), and remodeling of the ECM (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Connective tissue growth factor (CTGF, CCN2) belongs to the CCN (CYR61, CTGF, NOV) family of secreted extracellular matrix (ECM) proteins (1). Members of this family contain four conserved cysteine-rich domains, and interact in the ECM with a diverse array of cell surface receptors, including integrins and heparin-sulfate proteoglycans (2). These interactions regulate a multitude of cellular and tissue functions, including adhesion, proliferation, migration, differentiation, senescence, angiogenesis, inflammation, and wound repair (1, 3-5). The CTGF gene is a transcriptional target of both YAP/TAZ and TGFβ-SMAD signaling pathways (6,7), and aberrant regulation of CTGF expression is strongly associated with pathological conditions, notably cancer and fibrosis (8, 9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Receptor type protein tyrosine phosphatase F (PTPRF, LAR) is a transmembrane PTP that helps to regulate insulin signaling, cell proliferation and cell migration. The PTPRF protein is composed of an extracellular segment that contains several Ig-like and fibronectin (Fn-III) domains, a transmembrane region and a pair of cytoplasmic phosphatase domains (1,2). Functional studies reveal that the membrane-associated D1 phosphatase domain is responsible for substrate dephosphorylation, while the D2 domain is important for substrate specificity (3). PTPRF negatively regulates insulin signaling through dephosphorylation of insulin receptor and insulin receptor substrate (4). This phosphatase activates the pro-apoptotic DAPK serine/threonine kinase by removing a phosphate at Tyr491/492, while the kinase Src replaces the phosphate to inactivate DAPK at the same time it down regulates PTPRF expression (5). PTPRF is commonly found at focal adhesions where it interacts with liprin, which localizes the phosphatase to the membrane, and the Rac/Rho family GTPase Trio (6). Localization of PTPRF at adherens junctions results in PTPRF modification of β-catenin, which inhibits cell migration by limiting the amount of available cytosolic β-catenin (7).