20% off purchase of 3 or more products* | Learn More >>

Monoclonal Antibody Western Blotting Hexose Transport

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Glucose transporter 1 (Glut1, SLC2A1) is a widely expressed transport protein that displays a broad range of substrate specificity in transporting a number of different aldose sugars as well as an oxidized form of vitamin C into cells (1,2). Glut1 is responsible for the basal-level uptake of glucose from the blood through facilitated diffusion (2). Research studies show that Glut1 and the transcription factor HIF-1α mediate the regulation of glycolysis by O-GlcNAcylation in cancer cells (3). Additional studies demonstrate that Glut1 is required for CD4 T cell activation and is critical for the expansion and survival of T effector (Teff) cells (4). Mutations in the corresponding SLC2A1 gene cause GLUT1 deficiency syndromes (GLUT1DS1, GLUT1DS2), a pair of neurologic disorders characterized by delayed development, seizures, spasticity, paroxysmal exercise-induced dyskinesia, and acquired microcephaly (5,6). Two other neurologic disorders - dystonia-9 (DYT9) and susceptibility to idiopathic generalized epilepsy 12 (EIG12) - are also caused by mutations in the SLC2A1 gene (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: Glucokinase regulatory protein (GCKR, GKRP) regulates the activity and localization of glucokinase, an important metabolic regulator of glucose uptake, glycogen synthesis, and glucose production in hepatocytes (1). GKRP plays a key role in glucose homeostasis as it inhibits glucokinase activity and sequesters this metabolic enzyme in hepatocyte nuclei; in response to changes in glucose concentration, GCKR promotes the release of glucokinase into the cytoplasm (2). During conditions of low blood glucose levels, GCKR binds to fructose-6-phosphate, which leads to GCKR binding to glucokinase and the subsequent nuclear localization and inactivation of glucokinase. After feeding, GCKR binds fructose-1-phosphate, which disrupts the interaction between GCKR and glucokinase and releases active glucokinase to cytoplasm (1-3). Polymorphisms in the corresponding GCKR gene are associated with atypical plasma triglyceride levels, fasting glucose and insulin levels, and glucokinase activity (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Nucleoporin 98 kDa (NUP98) is a component of the nuclear pore complex. It is expressed as three different precursors that undergo auto-cleavage to generate a common amino-terminal 98 kDa peptide (NUP98) and carboxy-terminal 6, 96 (NUP96) and 88 (p88) kDa peptides (1,2). NUP98 contains FG and GLFG repeat domains at its amino terminus and a RNA-binding domain in its carboxy terminus (3). The NUP98 gene is localized on chromosome 11p15.5, a region frequently rearranged in leukemias. To date, 15 fusion partners have been identified for NUP98 (4,5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Nucleoporin 98 kDa (NUP98) is a component of the nuclear pore complex. It is expressed as three different precursors that undergo auto-cleavage to generate a common amino-terminal 98 kDa peptide (NUP98) and carboxy-terminal 6, 96 (NUP96) and 88 (p88) kDa peptides (1,2). NUP98 contains FG and GLFG repeat domains at its amino terminus and a RNA-binding domain in its carboxy terminus (3). The NUP98 gene is localized on chromosome 11p15.5, a region frequently rearranged in leukemias. To date, 15 fusion partners have been identified for NUP98 (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The nuclear pore complex (NPC) is a multi-subunit protein channel that spans the nuclear envelope and is responsible for the nucleocytoplasmic trafficking of RNA, proteins, and ribonucleoproteins (1). The 88 kDa nucleoporin protein (NUP88) is located on the cytoplasmic side of the NPC and found to be a part of a subcomplex with the NUP214 NPC subunit (1-3). This NUP88/NUP214 subcomplex interacts with CRM-1/exportin-1 to play an important role in the export of proteins, including the 60S ribosomal particle from the nucleus (4,5). Research studies demonstrate elevated expression and cytoplasmic accumulation of NUP88, visible as granular dots, in ovarian, prostate, and breast cancers (6-9). Increased NUP88 levels correlate with higher tumor grade, suggesting that NUP88 may be a putative tumor marker (1,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The nuclear pore complex (NPC) is a multi-subunit protein channel that spans the nuclear envelope and is responsible for the nucleocytoplasmic trafficking of RNA, proteins, and ribonucleoproteins (1,2). Nucleoporin 153 kDa (NUP153) protein functions as a scaffolding element that recruits other proteins to form the “nuclear basket” on the nuclear side of the pore complex. NUP153 is essential for normal nucleocytoplasmic transport of proteins and mRNAs and is critical for the quality control and retention of unspliced mRNAs in the nucleus (1,2). NUP153 is a potential DNA-binding subunit of the NPC and is important for proper regulation of embryonic stem cell pluripotency and differentiation (1,3). Depletion of NUP153 leads to derepression of developmental genes and induction of early differentiation. NUP153 binds to Nucleoporin-Associated Regions (NARs) that are found near the transcriptional start sites of developmental genes and mediates recruitment of Polycomb Repressor Complex 1 (PRC1) to repress transcription in embryonic stem cells (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: A group of related glucose transporters (Glut1-5 and 7) mediate the facilitated diffusion of glucose in nonepithelial mammalian tissues. Within insulin-responsive tissues such as muscle and fat, Glut1 contributes to basal glucose uptake while Glut4 is responsible for insulin-stimulated glucose transport (1-3). Glut4 is a 12-transmembrane domain protein that facilitates glucose transport in the direction of the glucose gradient. This transporter localizes to intracellular organelles (endosomes) in unstimulated cells and translocates to the cell surface following insulin stimulation (1,2,4). Translocation of Glut4 is dependent on Akt, which may act by phosphorylating AS160, a RabGAP protein involved in membrane trafficking (5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Hexokinase catalyzes the conversion of glucose to glucose-6-phosphate, the first step in glycolysis. Four distinct mammalian hexokinase isoforms, designated as hexokinase I, II, III, and IV (glucokinase), have been identified. Hexokinases I, II, and III are associated with the outer mitochondrial membrane and are critical for maintaining an elevated rate of aerobic glycolysis in cancer cells (Warburg Effect) (1) in order to compensate for the increased energy demands associated with rapid cell growth and proliferation (2,3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Hexokinase catalyzes the conversion of glucose to glucose-6-phosphate, the first step in glycolysis. Four distinct mammalian hexokinase isoforms, designated as hexokinase I, II, III, and IV (glucokinase), have been identified. Hexokinases I, II, and III are associated with the outer mitochondrial membrane and are critical for maintaining an elevated rate of aerobic glycolysis in cancer cells (Warburg Effect) (1) in order to compensate for the increased energy demands associated with rapid cell growth and proliferation (2,3).