Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Western Blotting Proteoglycan Binding

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: SLIT2 is an extracellular matrix-associated SLIT family member that functions as a ligand for roundabout (ROBO) family receptors (1). Activation of ROBO receptors by SLIT2 regulates various biological processes, including promoting cellular senescence via WNT inhibition (2), suppressing migration by enhanced β-catenin/E-cadherin association, regulating actin polymerization (4, 5), and suppressing cell proliferation induced by SDF1 and MCP1 (6, 7). In development, the SLIT-ROBO pathways play important roles in neuronal axon guidance, angiogenesis, and both kidney and mammary gland organogenesis. SLIT2 expression has been reported to suppress cancer cell growth, invasion, and metastasis, suggesting that modulation of SLIT2-ROBO signaling may have therapeutic potential in cancer biology (8, 9).

$115
20 µl
$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Western Blotting

Background: Cluster of differentiation molecule 11b (CD11b)/Integrin alpha M (ITGAM) is a transmembrane protein forming heterodimers that are composed of α and β subunits (1). CD11b is expressed by, and commonly used as a marker for, myeloid lineage cells, including neutrophils, monocytes, macrophages, and microglia (2). CD11b is phosphorylated at Ser1126 (cytoplasmic tail) in neutrophils. Research has shown that this phosphorylation event plays a role for leukocytes traveling from the blood stream to tissues (3). Furthermore, genome-wide association studies have linked CD11b to autoimmune diseases, such as systemic lupus erythematous (SLE) (4).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Cathepsin B (CSTB), part of the papain family of proteases, is a widely expressed lysosomal cysteine endopeptidase (1,2). Cathepsin B is produced from a larger precursor form, pro-cathepsin B, which runs at approximately 44 kDa on SDS-PAGE, and is proteolytically processed and glycosylated to form a mature two-chain protein containing a heavy chain (running at 27 and 24 kDa) and a light chain (5 kDa). High levels of cathepsin B are found in macrophages and osteoclasts, as well as various types of cancer cells, including lung, colon, prostate, breast, and stomach. In addition, expression of cathepsin B has been associated with multiple sclerosis (3), rheumatoid arthritis (4), and pancreatitis (5). While generally localized to lysosomes, in cancer alterations can lead to its secretion (6). Its role in tumor progression is thought to involve promotion of basement membrane degradation, invasion and metastasis (7,8). Expression can correlate with poor prognosis for a variety of forms of cancer (9-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The protein phosphatase (PTP) receptor CD45 is a type I transmembrane protein comprised of a pair of intracellular tyrosine phosphatase domains and a variable extracellular domain generated by alternative splicing (1). The catalytic activity of CD45 is a function of the first phosphatase domain (D1) while the second phosphatase domain (D2) may interact with and stabilize the first domain, or recruit/bind substrates (2,3). CD45 interacts directly with antigen receptor complex proteins or activates Src family kinases involved in the regulation of T- and B-cell antigen receptor signaling (1). Specifically, CD45 dephosphorylates Src-family kinases Lck and Fyn at their conserved negative regulatory carboxy-terminal tyrosine residues and upregulates kinase activity. Conversely, studies indicate that CD45 can also inhibit Lck and Fyn by dephosphorylating their positive regulatory autophosphorylation site. CD45 appears to be both a positive and a negative regulator that conducts signals depending on specific stimuli and cell type (1). Human leukocytes including lymphocytes, eosinophils, monocytes, basophils, and neutrophils express CD45, while erythrocytes and platelets are negative for CD45 expression (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The adhesive glycoprotein thrombospondin-1 (THBS1, TSP1) localizes to the extracellular matrix (ECM) and mediates interactions between cells and the ECM and among cells. Thrombospondin-1 is a multi-domain, glycosylated protein that interacts with a wide variety of extracellular targets, including matrix metalloproteinases (MMPs), collagens, cell receptors, growth factors, and cytokines (1). The protein structure of THBS1 includes an amino-terminal laminin G-like domain, a von Willebrand factor-binding domain, and multiple thrombospondin (TSP) repeated sequences designated as type I, type II, or type III repeats. Each thrombospondin domain interacts with a distinct type of cell surface ligands or protein targets. The amino-terminal domain interacts with aggrecan, heparin, and integrin proteins. Type I TSP repeats interact with MMPs and CD36, while carboxy-terminal repeats bind the thrombospondin receptor CD47 (1). Through these interactions, THBS1 exerts diverse effects on different signaling pathways, such as VEGF receptor/NO signaling, TGFβ signaling, and the NF-κB pathway (2-5). Thrombospondin-1 is an important regulator of many biological processes, including cell adhesion/migration, apoptosis, angiogenesis, inflammation, vascular function, and cancer development (2-5). The activity of thrombospondin-1 is mainly regulated by extracellular proteases. The metalloproteinase ADAMTS1 cleaves thrombospondin, resulting in the release of peptides with anti-angiogenic properties. Elastase and plasmin proteases degrade the THBS1 protein and down regulate its activity (6). As THBS1 is an important protein inhibitor of angiogenesis, the development of thrombospondin-based compounds and their use in therapeutic studies may provide a beneficial approach to the treatment of cancer (7,8).