Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Western Blotting Transporter Activity

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Nucleoporin 98 kDa (NUP98) is a component of the nuclear pore complex. It is expressed as three different precursors that undergo auto-cleavage to generate a common amino-terminal 98 kDa peptide (NUP98) and carboxy-terminal 6, 96 (NUP96) and 88 (p88) kDa peptides (1,2). NUP98 contains FG and GLFG repeat domains at its amino terminus and a RNA-binding domain in its carboxy terminus (3). The NUP98 gene is localized on chromosome 11p15.5, a region frequently rearranged in leukemias. To date, 15 fusion partners have been identified for NUP98 (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Coat Protein Complex II (COPII) is composed of five cytosolic proteins: Sec23/24 complex, Sec13/31 complex, and Sar1. COPII coat is located at the ER/Golgi interface and is involved in transport of newly synthesized proteins from the ER to the Golgi apparatus (1). COPII formation is initiated through the binding of the activated G protein, Sar1, to the Sec23/24 complex, thereby forming a prebudding complex that directly binds target molecules (1-3). The prebudding complex further recruits Sec13/31 to form mature COPII coat (4,5). The Sec24 subunit of COPII coat is thought to play a critical role in cargo selection (2,6). It binds directly to cargo proteins at the ER and brings them to COPII vesicles through interaction with Sec23. There are four Sec24 isoforms in human cells: Sec24A, Sec24B, Sec24C, and Sec24D (7). In mice, mutations in Sec24B have been linked to developmental defects (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Nucleoporin 98 kDa (NUP98) is a component of the nuclear pore complex. It is expressed as three different precursors that undergo auto-cleavage to generate a common amino-terminal 98 kDa peptide (NUP98) and carboxy-terminal 6, 96 (NUP96) and 88 (p88) kDa peptides (1,2). NUP98 contains FG and GLFG repeat domains at its amino terminus and a RNA-binding domain in its carboxy terminus (3). The NUP98 gene is localized on chromosome 11p15.5, a region frequently rearranged in leukemias. To date, 15 fusion partners have been identified for NUP98 (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The small GTPase Ran resides on both the cytosolic and nucleosolic sides of the nuclear pore complex (NPC) and regulates the import and export of various proteins to and from the nucleus. Like other small GTPases, Ran exists in either a GTP-bound or GDP-bound state. RanGTP that resides in the nucleus and promotes nuclear export, while cytosolic RanGDP promotes import. The gradient of RanGTP across the nuclear membrane allows for appropriate movement of cargo proteins across the NPC as well as maintenance of the mitotic spindle (1-3).Nuclear transport factor 2 (NTF2) regulates the subcellular distribution and function of Ran (4-5). The NTF2 homodimer facilitates the diffusion of RanGDP through NPCs via transient interactions with phenylalanine-glycine (FG) repeat domains on NPC proteins. NTF2 stabilizes the GDP-bound form of Ran until it is induced to dissociate by a nuclear factor in an ATP-dependent manor, thus allowing the guanine nucleotide exchange factor (GEF) RCC1 to mediate exchange of GDP for GTP on Ran (6-7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Fatty acid binding proteins (FABPs) bind to fatty acids and other lipids to function as cytoplasmic lipid chaperones (1). They participate in the transport of fatty acids and other lipids to various cellular pathways (1). They are critical mediators of metabolic processes, and are increasingly being understood to play key roles in disease (2). FABP5 is known as the epidermal fatty acid binding protein as it was originally identified in studies on psoriasis (3) where it was shown to play a role a role in keratinocyte differentiation (4). It has since been found to play diverse roles in other normal physiological processes as well as in disease states (5).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Tom20 (D8T4N) Rabbit mAb #42406.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Mitochondria play a central role in cellular energy metabolism and are essential organelles in eukaryotes. In humans, 13 proteins are encoded by the mitochondrial genome while the vast majority of mitochondrial proteins are encoded by the nuclear genome. As a result, most mitochondrial proteins are synthesized as precursors in the cytoplasm and imported across mitochondrial membranes by one or more translocase protein complexes (1). The translocase of the outer mitochondrial membrane (TOM complex) facilitates the import of proteins through the outer mitochondrial membrane, while the complementary translocase of the inner membrane (TIM complex) is responsible for protein transport to the mitochondrial matrix. The TOM complex consists of the receptors Tom20, Tom22, and Tom70, and the channel-forming protein Tom40 (1). Tom20 is localized in the outer mitochondrial membrane and initially recognizes precursors with a presequence to facilitate protein import across the outer mitochondrial membrane (2). In a sequential process, recognition of the presequence by Tom20 is followed by tethering of the presequence to the Tom40 protein complex for efficient protein import (3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The AP-2 coat assembly protein complex is an important component of clathrin-coated pits involved in receptor-mediated endocytosis at the plasma membrane (1-3). Each AP-2 heterotetramer is composed of α, β, μ, and σ protein subunits. The 50 kDa μ subunit (AP-2μ, AP2M1) is located at the core of the AP-2 complex and mediates interaction between the cargo protein and the clathrin-coated pit (1-4). The carboxy-terminal AP2M1 region recognizes the tyrosine-based, endocytotic sorting motif YXXφ found in cargo proteins and helps to bring the cargo protein to the clathrin-coated pit. Non-canonical, tyrosine-based endocytotic sorting signals can also promote interaction between cargo proteins and AP2M1 (5,6). AP2M1 plays an essential role in molecular signaling as it couples receptor-mediated endocytosis and pathways involving membrane receptors (7-9), matrix metalloproteinases (10), and ion channel proteins (11). Phosphorylation of specific AP2M1 residues and binding of lipids to this adaptor protein can regulate AP2M1 activity (12,13). Phosphorylation of AP2M1 at Thr156 by adaptor-associated kinase 1 (AAK1) stimulates affinity binding of AP2M1 to cargo protein signals (14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Vitamin A gives rise to multiple species of biologically active lipophilic metabolites, known as retinoids, which play a critical role in numerous physiological processes such as vision and embryonic development. Intracellularly, all-trans retinoic acid is bound with high affinity to either cellular retinoic acid-binding protein 1 (CRABP1) or cellular retinoic acid-binding protein 2 (CRABP2), which aids in its solubilization within the aqueous cytosolic compartment. Belonging to the intracellular lipid-binding protein family (iLBP), the human CRABPs are 74% identical at the protein level and each CRABP is highly conserved across multiple species. Research studies have shown that knockout of Crabp1 is not lethal but results in defects in limb development (1), suggesting that CRABP1 plays a role in establishing retinoic acid concentration gradients in the developing limb bud. Although it remains unclear how CRABP1 may regulate the formation of retinoic acid gradients in vivo, research studies have suggested that CRABP1 can enhance the activities of intracellular retinoic acid-metabolizing enzymes, thus blunting cellular responses to retinoic acid (2-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Fatty acid binding proteins (FABPs) bind to fatty acids and other lipids to function as cytoplasmic lipid chaperones (1). They participate in the transport of fatty acids and other lipids to various cellular pathways (2). Differential expression of FABPs is found in several types of tumors and their normal-cell counterparts (3). FABP7 is abundantly expressed in fetal brain and may be essential for development (4). Expression is required for the establishment of the radial glial fiber system, a system that is necessary for the development of cortical layers (5). Increased expression of FABP7 is associated with reduced survival in patients with glioblastoma (6), and is also found in glial cells following nerve injury (7). Investigators have found loss of FABP7 may be involved in the development and progression of breast cancer and expression of FABP7 has been shown to induce mammary differentiation and to inhibit growth of breast cancer cells (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The nuclear pore complex (NPC) is a multi-subunit protein channel that spans the nuclear envelope and is responsible for the nucleocytoplasmic trafficking of RNA, proteins, and ribonucleoproteins (1). The 88 kDa nucleoporin protein (NUP88) is located on the cytoplasmic side of the NPC and found to be a part of a subcomplex with the NUP214 NPC subunit (1-3). This NUP88/NUP214 subcomplex interacts with CRM-1/exportin-1 to play an important role in the export of proteins, including the 60S ribosomal particle from the nucleus (4,5). Research studies demonstrate elevated expression and cytoplasmic accumulation of NUP88, visible as granular dots, in ovarian, prostate, and breast cancers (6-9). Increased NUP88 levels correlate with higher tumor grade, suggesting that NUP88 may be a putative tumor marker (1,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Complexins are small soluble proteins composed of a central α-helical-structured domain surrounded by amino- and carboxy-terminal unstructured domains (1). These cytosolic proteins bind to t-SNAREs with low affinity and to assembled SNARE complexes with high affinity (1,2). Two isoforms, complexin-1 and complexin-2, are expressed in neuronal cells (3) where they regulate evoked and spontaneous exocytosis (4,5). Altered complexin expression resulting from RNAi-mediated knockdown (6) or gene invalidation (7) leads to alteration in spontaneous fusion events and neurotransmitter release, which reflects functions at both inhibitory and stimulatory synapses.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: Myoglobin (MB) is an oxygen-binding protein that contains one polypeptide chain and one heme group. It is expressed in vertebrate skeletal and cardiac muscles where it plays an essential role in the storage and transport of oxygen to mitochondria. Reversible oxygen binding occurs by a linkage with the imidazole nitrogen of the 91st histidine residue in the myoglobin chain. Research studies indicate that the blockade of myoglobin in isolated cardiac myocytes mimics hypoxia when electrically stimulated for paced contractions (1). During fetal development, myoglobin is required to support cardiac function (2). Diving mammals are known to have high concentrations of myoglobin in their blood, which may contribute to their ability to endure long periods of oxygen deprivation during deep dives (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The solute carrier family 39 (zinc transporter) member 7 (SLC39A7, ZIP7) is an ER and Golgi membrane protein that regulates cellular zinc homeostasis by controlling release of zinc from these organelles to the cytoplasm (1,2). Zinc release mediated by ZIP7 results in activation of protein kinases that are involved in cell proliferation and migration (3,4). The protein kinase CK2 phosphorylates and activates ZIP7 in response to extracellular signals, such as growth factor stimulation (4,5). Increased expression of ZIP7 is observed in breast cancer tissues (6). Research studies indicate that ZIP7 is responsible for activation of multiple tyrosine kinases in aggressive, tamoxifen-resistant breast cancer (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Western Blotting

Background: Hemoglobin (Hb, Hgb) is a heme-containing transport protein found primarily in the red blood cells of humans and most other vertebrates. The primary function of hemoglobin is to transport oxygen from the external environment to the body tissues. Hemoglobin also facilitates metabolic waste removal by assisting in the transport of carbon dioxide from tissues back to the respiratory organs (1). Mature hemoglobin is a tetrameric protein complex, with each subunit containing an oxygen-binding heme group (2). Multiple isoforms of hemoglobin exist, which vary in relative abundance depending on developmental stage. Adult hemoglobin (HbA) is comprised of two α subunits and two β subunits and is the predominant hemoglobin found in red blood cells of children and adults. Fetal hemoglobin (HbF) contains two α subunits and two γ subunits and is the predominant isoform found during fetal and early postnatal development (2,3). Mutations that alter the structure or abundance of specific globin subunits can result in pathological conditions known as hemoglobinopathies (4). One such disorder is sickle cell disease, which is characterized by structural abnormalities that limit the oxygen carrying capacity of red blood cells. By contrast, thalassemia disorders are characterized by deficiencies in the abundance of specific hemoglobin subunits (4). Clinical treatments that are designed to alter the expression of specific hemoglobin subunits can be used to treat hemoglobinopathies (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The nuclear pore complex (NPC) is a multi-subunit protein channel that spans the nuclear envelope and is responsible for the nucleocytoplasmic trafficking of RNA, proteins, and ribonucleoproteins (1,2). Nucleoporin 153 kDa (NUP153) protein functions as a scaffolding element that recruits other proteins to form the “nuclear basket” on the nuclear side of the pore complex. NUP153 is essential for normal nucleocytoplasmic transport of proteins and mRNAs and is critical for the quality control and retention of unspliced mRNAs in the nucleus (1,2). NUP153 is a potential DNA-binding subunit of the NPC and is important for proper regulation of embryonic stem cell pluripotency and differentiation (1,3). Depletion of NUP153 leads to derepression of developmental genes and induction of early differentiation. NUP153 binds to Nucleoporin-Associated Regions (NARs) that are found near the transcriptional start sites of developmental genes and mediates recruitment of Polycomb Repressor Complex 1 (PRC1) to repress transcription in embryonic stem cells (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Synaptophysin (SYP) is a neuronal synaptic vesicle glycoprotein that is expressed in neuroendocrine cells and neoplasms (1). Synaptophysin contains four transmembrane domains that form a hexameric channel or gap junction-like pore (2). Synaptophysin binds to the SNARE protein synaptobrevin/VAMP, which prevents the inclusion of synaptobrevin in the synaptic vesicle fusion complex and creates a pool of synaptobrevin for exocytosis when synapse activity increases (3). Synaptophysin is also responsible for targeting synaptobrevin 2/VAMP2 to synaptic vesicles, a critical component of the fusion complex (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Adenine nucleotide translocase 2 (ANT2/SLC25A5) is a member of the adenine nucleotide translocase family of mitochondrial inner membrane proteins that function differently in metabolic and apoptotic pathways (1). Research studies indicate that ANT2 expression in undifferentiated, proliferating cells correlates with the rate of glycolytic metabolism and may be an indicator of carcinogenesis (2). Suppression of ANT2/SLC25A5 expression by specific RNA interference in human breast cancer cells promotes apoptosis and inhibits tumor cell growth (2), which suggests a cytoprotective role of ANT2/SLC25A5 (1,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Fatty acid binding proteins (FABPs) are cytoplasmic lipid chaperones that bind fatty acids and lipids for transport to various cellular components (1,2). Research studies demonstrate differential FABP expression in several types of tumors and their normal-cell counterparts (3). Fatty acid binding protein 3 (FABP3) is predominantly expressed in heart, skeletal muscle, brain, and mammary gland (4). FABP3 may play a role in supplying energy to the heart and other tissues (5). The release of FABP3 from the heart upon infarction is used as a serum marker for myocardial stress and cardiotoxicity (6). Additional studies suggest that FABP3 is a potential tumor suppressor in breast cancer (7).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Synaptophysin (SYP) is a neuronal synaptic vesicle glycoprotein that is expressed in neuroendocrine cells and neoplasms (1). Synaptophysin contains four transmembrane domains that form a hexameric channel or gap junction-like pore (2). Synaptophysin binds to the SNARE protein synaptobrevin/VAMP, which prevents the inclusion of synaptobrevin in the synaptic vesicle fusion complex and creates a pool of synaptobrevin for exocytosis when synapse activity increases (3). Synaptophysin is also responsible for targeting synaptobrevin 2/VAMP2 to synaptic vesicles, a critical component of the fusion complex (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The sodium-dependent phosphate transport protein 2B (NaPi-2b, SLC34A2) is a sodium dependent inorganic phosphate (Pi) transporter that regulates phosphate homeostasis in various organs, including the small intestine, lung, liver, and testis (1). In the small intestine, NaPi-2b localizes to the intestinal brush border membrane to mediate Pi reabsorption (2). In the lung, NaPi-2b is expressed in the apical membrane of type II alveolar cells and is involved in the synthesis of surfactant (3). Mutations in the corresponding SLC34A2 gene causes pulmonary alveolar microlithiasis, a rare autosomal recessive disorder characterized by the deposition of calcium phosphate microliths throughout the lungs (4). Research studies show aberrant expression of NaPi-2b in various type of cancer, including ovarian, breast, and lung cancer (5). Chromosomal rearrangements involving SLC34A2-ROS1 are seen in gastric carcinoma and non-small cell lung cancer and result in the formation of a SLC34A2-ROS1 chimeric protein that retains a constitutive kinase activity (6,7).