20% off purchase of 3 or more products* | Learn More >>

Monoclonal Antibody Western Blotting Virus-Host Interaction

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Transforming growth factor-β (TGF-β) superfamily members are critical regulators of cell proliferation and differentiation, developmental patterning and morphogenesis, and disease pathogenesis (1-4). TGF-β elicits signaling through three cell surface receptors: type I (RI), type II (RII), and type III (RIII). Type I and type II receptors are serine/threonine kinases that form a heteromeric complex. In response to ligand binding, the type II receptors form a stable complex with the type I receptors allowing phosphorylation and activation of type I receptor kinases (5). The type III receptor, also known as betaglycan, is a transmembrane proteoglycan with a large extracellular domain that binds TGF-β with high affinity but lacks a cytoplasmic signaling domain (6,7). Expression of the type III receptor can regulate TGF-β signaling through presentation of the ligand to the signaling complex. The only known direct TGF-β signaling effectors are the Smad family proteins, which transduce signals from the cell surface directly to the nucleus to regulate target gene transcription (8,9).

$260
100 µl
This Cell Signaling Technology antibody is immobilized by the covalent reaction of formylbenzamide-modified antibody with hydrazide-activated magnetic bead.PKR (D7F7) Rabbit mAb (Magnetic Bead Conjugate) is useful for immunoprecipitation assays of PKR protein.
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein kinase R (PKR) is transcriptionally induced by interferon and activated by double-stranded RNA (dsRNA). PKR inhibits translation initiation through phosphorylation of the α subunit of the initiation factor eIF2 (eIF2α) and also controls the activation of several transcription factors, such as NF-κB, p53, and the Stats. In addition, PKR mediates apoptosis induced by many different stimuli, such as LPS, TNF-α, viral infection, and serum starvation (1,2). Activation of PKR by dsRNA results in PKR dimerization and autophosphorylation of Thr446 and Thr451 in the activation loop. Substitution of threonine for alanine at position 451 completely inactivated PKR, while a mutant with a threonine to alanine substitution at position 446 was partially active (3). Research studies have implicated PKR activation in the pathologies of neurodegenerative diseases, including Alzheimer's disease (4,5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Poly(A)-binding protein 2 (PABP2, PAPBN1) is a nuclear RNA-binding protein involved in the post-transcriptional processing of RNA molecules (1). The PABP2 protein enhances RNA polyadenylation by stimulating poly(A) polymerase (PAP) activity and facilitating the interaction between PAP and the cleavage and specificity factor (CPSF) to regulate poly(A) tail length (2-4). The role that PABP2 plays in regulating poly(A) tail formation and site selection may be important in influencing the length of the 3’ untranslated region (UTR), which can alter transcript stability and translation by RNA binding proteins and miRNAs (1,5). Mutations in the corresponding PABPN1 gene can result in oculopharyngeal muscular dystrophy (OPMD), an autosomal dominant muscle disorder characterized by weakness in proximal limb muscles, ptosis, and dysphagia (1,6).

$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: DC-SIGN (CD209, CLEC4L) is a C-type lectin receptor expressed by dendritic cells (DCs) (1,2). The DC-SIGN transcript can undergo several splicing events to generate at least thirteen different transmembrane and soluble isoforms (3). DC-SIGN responds to a broad range of pathogens due to its ability to recognize both mannose and fructose carbohydrates, and is well studied for its role in HIV infection. Recognition of the HIV envelope glycoprotein gp120 by DC-SIGN leads to internalization of HIV by DCs and facilitates transmission of the virus to CD4+ T cells (2,4). DC-SIGN also mediates adhesion to T cells through interaction with ICAM-3, as well as transmigration across the endothelium by binding to ICAM-2 (1,5). The DC-SIGN receptor can modulate TLR signaling by activating the kinase Raf-1 (6,7). The closely related molecule DC-SIGNR (L-SIGN, CLEC4M) is 77% homologous to DC-SIGN and likely arose through a gene duplication event (8). Like DC-SIGN, DC-SIGNR binds mannose carbohydrates on the surface of pathogens (8,9). However, the expression patterns of the two receptors differ, as DC-SIGNR expression is restricted to endothelial cells of the liver, lymph node, and placenta (10). Murine cells contain a set of related molecules, SIGNR1-SIGNR8 (11). Based on sequence analysis, there is no clear murine ortholog to human DC-SIGN, however SIGNR3 is the most functionally similar due to its ability to recognize both mannose and fructose structures (11).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The mTORC1 kinase complex is a critical regulator of cell growth (1,2). Its activity is modulated by energy levels, growth factors, and amino acids via signaling through Akt, MAPK, and AMPK pathways (3,4). Recent studies found that the four related GTPases, RagA, RagB, RagC, and RagD, interact with raptor within the mTORC1 complex (1,2). These interactions are both necessary and sufficient for mTORC1 activation in response to amino acid signals (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: The human retinoid X receptors (RXRs) are encoded by three distinct genes (RXRα, RXRβ, and RXRγ) and bind selectively and with high affinity to the vitamin A derivative, 9-cis-retinoic acid. RXRs are type-II nuclear hormone receptors that are largely localized to the nuclear compartment independent of ligand binding. Nuclear RXRs form heterodimers with nuclear hormone receptor subfamily 1 proteins, including thyroid hormone receptor, retinoic acid receptors, vitamin D receptor, peroxisome proliferator-activated receptors, liver X receptors, and farnesoid X receptor (1). Since RXRs heterodimerize with multiple nuclear hormone receptors, they play a central role in transcriptional control of numerous hormonal signaling pathways by binding to cis-acting response elements in the promoter/enhancer region of target genes (2).