Microsize antibodies for $99 | Learn More >>

Mouse Chloride Transmembrane Transporter Activity

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry)

Background: Anion exchange protein 1 (AE1), also named solute carrier family 4 member 1 (SLC4A1), is an anion transporter that mediates chloride-bicarbonate exchange in the kidney and regulates normal acidification of the urine (1,2). A different isoform of AE1 is a major integral membrane structure protein of erythrocytes, where it plays a critical role in the removal of carbon dioxide from tissues (3). In addition, AE1 is required for normal flexibility and stability of the erythrocyte membrane. Mutations in SLC4A1 can lead to hereditary spherocytosis, ovalocytosis, and distal renal tubular-acidosis (4-7). Other mutations that do not cause disease became novel blood group antigens, which are part of the Diego blood group system (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Anion exchange protein 1 (AE1), also named solute carrier family 4 member 1 (SLC4A1), is an anion transporter that mediates chloride-bicarbonate exchange in the kidney and regulates normal acidification of the urine (1,2). A different isoform of AE1 is a major integral membrane structure protein of erythrocytes, where it plays a critical role in the removal of carbon dioxide from tissues (3). In addition, AE1 is required for normal flexibility and stability of the erythrocyte membrane. Mutations in SLC4A1 can lead to hereditary spherocytosis, ovalocytosis, and distal renal tubular-acidosis (4-7). Other mutations that do not cause disease became novel blood group antigens, which are part of the Diego blood group system (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The electroneutral cation-chloride-coupled co-transporter (SLC12) gene family comprises bumetanide-sensitive Na+/K+/Cl- (NKCC), thiazide-sensitive Na+/Cl-, and K+/Cl- (KCC) co-transporters. SLC12A1/NKCC2 and SLC12A2/NKCC1 regulate cell volume and maintain cellular homeostasis in response to osmotic and oxidative stress (1). The broadly expressed NKCC1 is thought to play roles in fluid secretion (i.e. salivary gland function), salt balance (i.e. maintenance of renin and aldosterone levels), and neuronal development and signaling (2-7). During neuronal development, NKCC1 and KCC2 maintain a fine balance between chloride influx (NKCC1) and efflux (KCC2), which regulates γ-aminobutyric acid (GABA)-mediated neurotransmission (3). Increased NKCC1 expression in immature neurons maintains high intracellular chloride levels that result in inhibitory GABAergic signaling; KCC2 maintains low intracellular chloride levels and excitatory GABAergic responses in mature neurons (4,5,8). Deletion of NKCC1 impairs NGF-mediated neurite outgrowth in PC-12D cells while inhibition of NKCC1 with bumetanide inhibits re-growth of axotomized dorsal root ganglion cells (6,7). Defective chloride homeostasis in neurons is linked to seizure disorders that are ameliorated by butemanide treatment, indicating that abnormal NKCC1 and NKCC2 expression or signaling may play a role in neonatal and adult seizures (9-12). NKCC1 is found as a homodimer or within heterooligomers with other SLC12 family members. This transport protein associates with a number of oxidative- and osmotic-responsive kinases that bind, phosphorylate, and activate NKCC1 co-transporter activity (13-16). In response to decreased intracellular chloride concentrations, Ste20-related proline-alanine-rich kinase (SPAK) phosphorylates NKCC1 to increase co-transporter activity and promote chloride influx (16-19). Oxidative stress response kinase 1 (OSR1) also phosphorylates and activates NKCC1 in response to oxidative stress (14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Na-K-2Cl cotransporter (NKCC2) is a sodium-potassium-chloride cotransporter. It is mainly expressed on the luminal membrane of renal epithelial cells of the thick ascending limb of Henle's loop (TALH) and mediates the majority of NaCl resorption and concentration of urine (1,2). NKCC2 is the target for several diuretic drugs, such as bumetanide, and is involved in the pathogenesis of hypertension (3,4). Mutations in the NKCC2-encoding gene, SLC12A1, causes Bartter’s syndrome, which is featured by impaired salt reabsorption in the TALH, hypokalemic metabolic alkalosis, and hypercalciuria (5,6). Recently, NKCC2 was reported to be expressed in the brain hypothalamo-neurohypophyseal system (HNS) and upregulated upon osmotic stress (7).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunofluorescence (Frozen)

Background: The electroneutral cation-chloride-coupled co-transporter (SLC12) gene family comprises bumetanide-sensitive Na+/K+/Cl- (NKCC), thiazide-sensitive Na+/Cl-, and K+/Cl- (KCC) co-transporters. SLC12A1/NKCC2 and SLC12A2/NKCC1 regulate cell volume and maintain cellular homeostasis in response to osmotic and oxidative stress (1). The broadly expressed NKCC1 is thought to play roles in fluid secretion (i.e. salivary gland function), salt balance (i.e. maintenance of renin and aldosterone levels), and neuronal development and signaling (2-7). During neuronal development, NKCC1 and KCC2 maintain a fine balance between chloride influx (NKCC1) and efflux (KCC2), which regulates γ-aminobutyric acid (GABA)-mediated neurotransmission (3). Increased NKCC1 expression in immature neurons maintains high intracellular chloride levels that result in inhibitory GABAergic signaling; KCC2 maintains low intracellular chloride levels and excitatory GABAergic responses in mature neurons (4,5,8). Deletion of NKCC1 impairs NGF-mediated neurite outgrowth in PC-12D cells while inhibition of NKCC1 with bumetanide inhibits re-growth of axotomized dorsal root ganglion cells (6,7). Defective chloride homeostasis in neurons is linked to seizure disorders that are ameliorated by butemanide treatment, indicating that abnormal NKCC1 and NKCC2 expression or signaling may play a role in neonatal and adult seizures (9-12). NKCC1 is found as a homodimer or within heterooligomers with other SLC12 family members. This transport protein associates with a number of oxidative- and osmotic-responsive kinases that bind, phosphorylate, and activate NKCC1 co-transporter activity (13-16). In response to decreased intracellular chloride concentrations, Ste20-related proline-alanine-rich kinase (SPAK) phosphorylates NKCC1 to increase co-transporter activity and promote chloride influx (16-19). Oxidative stress response kinase 1 (OSR1) also phosphorylates and activates NKCC1 in response to oxidative stress (14).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen)

Background: The Na-K-2Cl cotransporter (NKCC2) is a sodium-potassium-chloride cotransporter. It is mainly expressed on the luminal membrane of renal epithelial cells of the thick ascending limb of Henle's loop (TALH) and mediates the majority of NaCl resorption and concentration of urine (1,2). NKCC2 is the target for several diuretic drugs, such as bumetanide, and is involved in the pathogenesis of hypertension (3,4). Mutations in the NKCC2-encoding gene, SLC12A1, causes Bartter’s syndrome, which is featured by impaired salt reabsorption in the TALH, hypokalemic metabolic alkalosis, and hypercalciuria (5,6). Recently, NKCC2 was reported to be expressed in the brain hypothalamo-neurohypophyseal system (HNS) and upregulated upon osmotic stress (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: SLC1A4, also known as ASCT1, is a neutral amino acid transporter. Its other name, ASCT1, was given because it mediates obligatory exchange of alanine, serine, cysteine, and threonine (1). SLC1A4 mediates the efflux of glutamate from the neuron into the synaptic junction via calcium-independent release, as well as mediating the efflux of L-serine from glial cells and its uptake by neurons (2). SLC1A4-mediated transport is shown to involve a symmetrical potassium-independent electroneutral exchange of neutral amino acids and sodium, such that the current activated during transport is carried only by chloride ions (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: Glutamatergic neurons release glutamate, the most common excitatory neurotransmitter. Their synaptic vesicles are filled with glutamate by vesicular glutamate transporters, VGLUTs (1). VGLUT1, also called solute carrier family 17 member 7 (SLC17A7), was first identified as an inorganic phosphate transporter (2). Despite the absence of homology with neurotransmitter transporters, VGLUT1 was later demonstrated to be a glutamate transporter (1) specific to glutamatergic neurons (3). Closely related to VGLUT1, VGLUT2 and VGLUT3 are also involved in glutamate uptake into synaptic vesicles, but define different neuronal subpopulations (4,5). VGLUT1 and VGLUT2 are the most abundant isoforms. VGLUT1 is expressed in the cortex, hippocampus, and cerebellar cortex, while VGLUT2 is mostly found in the thalamus (6,7). VGLUT3 is expressed in hair cells of the auditory system (8).