Microsize antibodies for $99 | Learn More >>

Mouse Proton Transport

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Eukaryotic cells contain ATP-driven proton pumps known as vacuolar H+-ATPases (V-ATPases) that acidify intracellular compartments and translocate protons across the plasma membrane (1,2). Intracellular v-ATPases play an important role in endocytosis and intracellular membrane trafficking, while plasma membrane v-ATPases are important in processes such as urinary acidification and bone resorption (1,2). Vacuolar ATPase enzymes are large, heteromultimeric protein complexes with component proteins found in either the V1 peripheral domain or the V0 integral domain (2). The cytoplasmic V1 domain contains a hexamer of A and B catalytic subunits, as well as a number of other protein subunits required for ATPase assembly and ATP hydrolysis. The integral V0 v-ATPase domain exhibits protein translocase activity and is responsible for transport of protons across the membrane (2). Research studies show that the v-ATPases ATP6V0c, ATP6V0d1, ATP6V1A, ATP6V1B2, and ATP6V1D interact with the Ragulator protein complex and are essential for amino acid induced activation of mTORC1 on the surface of lysosomes (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Eukaryotic cells contain ATP-driven proton pumps known as vacuolar H+-ATPases (V-ATPases) that acidify intracellular compartments and translocate protons across the plasma membrane (1,2). Intracellular v-ATPases play an important role in endocytosis and intracellular membrane trafficking, while plasma membrane v-ATPases are important in processes such as urinary acidification and bone resorption (1,2). Vacuolar ATPase enzymes are large, heteromultimeric protein complexes with component proteins found in either the V1 peripheral domain or the V0 integral domain (2). The cytoplasmic V1 domain contains a hexamer of A and B catalytic subunits, as well as a number of other protein subunits required for ATPase assembly and ATP hydrolysis. The integral V0 v-ATPase domain exhibits protein translocase activity and is responsible for transport of protons across the membrane (2). Research studies show that the v-ATPases ATP6V0c, ATP6V0d1, ATP6V1A, ATP6V1B2, and ATP6V1D interact with the Ragulator protein complex and are essential for amino acid induced activation of mTORC1 on the surface of lysosomes (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Uncoupling protein 2 (UCP2) is a mitochondrial inner membrane transport protein that is expressed in a wide range of tissues (1). UCP2 inhibits mitochondrial glucose oxidation and promotes glycolysis in human pluripotent stem cells (hPSCs) (2). During early differentiation of hPSCs, the expression of UCP2 is repressed, which results in reduced glycolysis (2). This demonstrates a role for UCP2 in the metabolic reprogramming during differentiation of hPSCs (2). Overexpression of UCP2 in cancer cells stimulates oxidative phosphorylation in mitochondria and inhibits cell proliferation (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Uncoupling protein 1 (UCP1) is a mitochondrial inner membrane transport protein that is primarily expressed in brown adipose tissue (BAT). UCP1 dissipates the pH gradient resulting from oxidative phosphorylation, which uncouples ATP synthesis from oxidative phosphorylation and leads to the release of heat energy. As a result, UCP1 plays an important role in thermogenesis (reviewed in 1). Research studies indicate that subcutaneous white adipose depots in mice contain beige adipocytes that express low levels of UCP1 protein (2). Additional studies show possible differences in thermogenesis in individuals carrying specific polymorphisms in the corresponding UCP1 gene (3). Related studies link UCP1 to the possible development of obesity and type 2 diabetes (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Western Blotting

Background: The Na,K-ATPase is an integral membrane heterodimer belonging to the P-type ATPase family. This ion channel uses the energy derived from ATP hydrolysis to maintain membrane potential by driving sodium export and potassium import across the plasma membrane against their electrochemical gradients. It is composed of a catalytic α subunit and a β subunit (reviewed in 1). Several phosphorylation sites have been identified for the α1 subunit. Tyr10 is phosphorylated by an as yet undetermined kinase (2), Ser16 and Ser23 are phosphorylated by PKC, and Ser943 is phosphorylated by PKA (3-5). All of these sites have been implicated in the regulation of enzyme activity in response to hormones and neurotransmitters, altering trafficking and kinetic properties of Na,K-ATPase. Altered phosphorylation in response to angiotensin II stimulates activity in the rat proximal tubule (6). Na,K-ATPase is also involved in other signal transduction pathways. Insulin regulates its localization in differentiated primary human skeletal muscle cells, and this regulation is dependent on ERK1/2 phosphorylation of the α subunit (7). Na,K-ATPase and Src form a signaling receptor complex that affects regulation of Src kinase activity and, subsequently, its downstream effectors (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: A group of related glucose transporters (Glut1-5 and 7) mediate the facilitated diffusion of glucose in nonepithelial mammalian tissues. Within insulin-responsive tissues such as muscle and fat, Glut1 contributes to basal glucose uptake while Glut4 is responsible for insulin-stimulated glucose transport (1-3). Glut4 is a 12-transmembrane domain protein that facilitates glucose transport in the direction of the glucose gradient. This transporter localizes to intracellular organelles (endosomes) in unstimulated cells and translocates to the cell surface following insulin stimulation (1,2,4). Translocation of Glut4 is dependent on Akt, which may act by phosphorylating AS160, a RabGAP protein involved in membrane trafficking (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Glucose transporter 1 (Glut1, SLC2A1) is a widely expressed transport protein that displays a broad range of substrate specificity in transporting a number of different aldose sugars as well as an oxidized form of vitamin C into cells (1,2). Glut1 is responsible for the basal-level uptake of glucose from the blood through facilitated diffusion (2). Research studies show that Glut1 and the transcription factor HIF-1α mediate the regulation of glycolysis by O-GlcNAcylation in cancer cells (3). Additional studies demonstrate that Glut1 is required for CD4 T cell activation and is critical for the expansion and survival of T effector (Teff) cells (4). Mutations in the corresponding SLC2A1 gene cause GLUT1 deficiency syndromes (GLUT1DS1, GLUT1DS2), a pair of neurologic disorders characterized by delayed development, seizures, spasticity, paroxysmal exercise-induced dyskinesia, and acquired microcephaly (5,6). Two other neurologic disorders - dystonia-9 (DYT9) and susceptibility to idiopathic generalized epilepsy 12 (EIG12) - are also caused by mutations in the SLC2A1 gene (7,8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The Na,K-ATPase is an integral membrane heterodimer belonging to the P-type ATPase family. This ion channel uses the energy derived from ATP hydrolysis to maintain membrane potential by driving sodium export and potassium import across the plasma membrane against their electrochemical gradients. It is composed of a catalytic α subunit and a β subunit (reviewed in 1). Several phosphorylation sites have been identified for the α1 subunit. Tyr10 is phosphorylated by an as yet undetermined kinase (2), Ser16 and Ser23 are phosphorylated by PKC, and Ser943 is phosphorylated by PKA (3-5). All of these sites have been implicated in the regulation of enzyme activity in response to hormones and neurotransmitters, altering trafficking and kinetic properties of Na,K-ATPase. Altered phosphorylation in response to angiotensin II stimulates activity in the rat proximal tubule (6). Na,K-ATPase is also involved in other signal transduction pathways. Insulin regulates its localization in differentiated primary human skeletal muscle cells, and this regulation is dependent on ERK1/2 phosphorylation of the α subunit (7). Na,K-ATPase and Src form a signaling receptor complex that affects regulation of Src kinase activity and, subsequently, its downstream effectors (8,9).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: The Na,K-ATPase is an integral membrane heterodimer belonging to the P-type ATPase family. This ion channel uses the energy derived from ATP hydrolysis to maintain membrane potential by driving sodium export and potassium import across the plasma membrane against their electrochemical gradients. It is composed of a catalytic α subunit and a β subunit (reviewed in 1). Several phosphorylation sites have been identified for the α1 subunit. Tyr10 is phosphorylated by an as yet undetermined kinase (2), Ser16 and Ser23 are phosphorylated by PKC, and Ser943 is phosphorylated by PKA (3-5). All of these sites have been implicated in the regulation of enzyme activity in response to hormones and neurotransmitters, altering trafficking and kinetic properties of Na,K-ATPase. Altered phosphorylation in response to angiotensin II stimulates activity in the rat proximal tubule (6). Na,K-ATPase is also involved in other signal transduction pathways. Insulin regulates its localization in differentiated primary human skeletal muscle cells, and this regulation is dependent on ERK1/2 phosphorylation of the α subunit (7). Na,K-ATPase and Src form a signaling receptor complex that affects regulation of Src kinase activity and, subsequently, its downstream effectors (8,9).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Stomatin-like protein 2 (SLP-2 and also known as STOML2) is a lipid-anchored mitochondrial protein that is part of a large protein complex that regulates mitochondrial biogenesis and function. Proteomic studies identified SLP-2 as a widely expressed mitochondria-enriched protein (1). As a member of both the stomatin family and stomatin-prohibitin-flotillin-HfLC/K (SPFH) superfamily of proteins, SLP-2 forms large hetero-oligomeric complexes with other mitochondrial proteins, including prohibtin, mitofusin 2, and cardiolipin (2, 3). SLP-2 contains a highly conserved SPFH domain that mediates its ability to associate with the mitochondrial inner membrane and form specialized membrane microdomains. As an inner membrane organizer of other mitochondrial proteins, SLP-2 performs multiple mitochondrial functions, including regulation of mitochondrial biogenesis, energy/calcium homeostasis, translation, and mitochondrial-mediated cellular stress responses (3, 4, 5, 6, 7, 8). Enhanced SLP-2 expression is also associated with several human cancers, including gallbladder, rectal, and gastric cancer (9, 10, 11).