Microsize antibodies for $99 | Learn More >>

Parkinson's Disease Antibody Sampler Kit

The Parkinson's Research Antibody Sampler Kit provides an economical means of detecting target proteins related to Parkinson's disease. The kit contains enough primary and secondary antibody to perform two western blots per primary.

Background: Autophagy is a catabolic process for the autophagosome-lysosomal degradation of bulk cytoplasmic contents (1, 2). Selective autophagy targets the degradation of distinct sets of substrates and organelles (3-5). One of the best studied examples of selective autophagy involves the clearance of damaged mitochondria through a process called mitophagy. Several pathways have been described for various contexts of mitophagy, including the FUNDC1 pathway, the BNIP3 and BNIP3L/Nix pathway, and the PINK1/Parkin pathway. FUNDC1 is a mitochondrial protein that is phosphorylated by the autophagy kinase ULK1 and regulates hypoxia induced mitophagy (6, 7). BNIP3L/Nix and BNIP3 are members of the Bcl-2 family of apoptosis regulators that are expressed on mitochondria, induced by hypoxia, and have have been shown to play a role in mitophagy (8). BNIP3L/Nix is also important in the autophagic maturation of erythroid cells (9). FUNDC1, BNIP3 and BNIP3L/Nix bind to LC3 family members, targeting the mitochondria to the autophagosome.Non-hypoxic induction of mitophagy can be regulated by the PINK1/Parkin pathway, which plays causative roles in neurodegenerative disease, most notably Parkinson’s disease (10, 11). PINK1 is a mitochondrial serine/threonine kinase that is stabilized on the outer mitochondrial membrane of damaged mitochondria. Substrates of PINK1 include the E3 ubiquitin ligase Parkin and ubiquitin itself (12-14). Phosphorylation of Parkin as well as binding to phosphorylated ubiquitin leads to accumulation of ubiquitinated chains on multiple mitochondrial proteins. Ubiquitinated proteins are recognized by selective cargo receptors including SQSTM1/p62, Optineurin, and NDP52 (15-16). Autophagy cargo receptors contain an LC3-interacting region (LIR) required for binding to Atg8/LC3 family members and targeting to the autophagosome (3).

The Stress and Apoptosis Antibody Sampler Kit provides an economical means of evaluating stress and apoptotic responses of each protein. The kit contains enough primary and secondary antibody to perform two western blot experiments per primary antibody.
The Phospho-SAPK/JNK Pathway Antibody Sampler Kit provides a fast and economical means of evaluating multiple members of the SAPK/JNK pathway as well as their activation state. The kit contains enough primary and secondary antibodies to perform two Western blot experiments.

Background: The stress-activated protein kinase/Jun-amino-terminal kinase SAPK/JNK is potently and preferentially activated by a variety of environmental stresses including UV and gamma radiation, ceramides, inflammatory cytokines, and in some instances, growth factors and GPCR agonists (1-6). As with the other MAPKs, the core signaling unit is composed of a MAPKKK, typically MEKK1-MEKK4, or by one of the mixed lineage kinases (MLKs), which phosphorylate and activate MKK4/7. Upon activation, MKKs phosphorylate and activate the SAPK/JNK kinase (2). Stress signals are delivered to this cascade by small GTPases of the Rho family (Rac, Rho, cdc42) (3). Both Rac1 and cdc42 mediate the stimulation of MEKKs and MLKs (3). Alternatively, MKK4/7 can be activated in a GTPase-independent mechanism via stimulation of a germinal center kinase (GCK) family member (4). There are three SAPK/JNK genes each of which undergoes alternative splicing, resulting in numerous isoforms (3). SAPK/JNK, when active as a dimer, can translocate to the nucleus and regulate transcription through its effects on c-Jun, ATF-2, and other transcription factors (3,5).

The Phospho-MAPK Family Antibody Sampler Kit provides an economical means of evaluating the phosphorylation state of p38, p44/42, and SAPK/JNK mitogen-activated protein kinases. The kit contains enough primary and secondary antibodies to perform two western blot experiments.

Background: p44/42 MAPK (Erk1/2), SAPK/JNK, and p38 MAPK function in protein kinase cascades that play a critical role in the regulation of cell growth, differentiation, and control of cellular responses to cytokines and stress. p44/42 MAPK is activated by growth and neurotrophic factors. Activation occurs through phosphorylation of threonine and tyrosine residues (Thr202 and Tyr204 in human Erk1) at the sequence T*EY* by a single upstream MAP kinase kinase (MEK). SAPK/JNK and p38 MAPK are activated by inflammatory cytokines and by a wide variety of cellular stresses. Activation of SAPK/JNK occurs via phosphorylation at Thr183 and Tyr185 by the dual specificity enzyme SEK/MKK4. Both MKK3 and SEK phosphorylate p38 MAPK on tyrosine and threonine at the sequence T*GY* to activate p38 MAP kinase (1-5).

The MAPK Family Antibody Sampler Kit provides an economical means of evaluating total levels of p38, p44/42, and SAPK/JNK mitogen-activated protein kinases. The kit contains enough primary and secondary antibody to perform two western blot experiments.

Background: p44/42 MAPK (Erk1/2), SAPK/JNK, and p38 MAPK function in protein kinase cascades that play a critical role in the regulation of cell growth, differentiation, and control of cellular responses to cytokines and stress. p44/42 MAPK is activated by growth and neurotrophic factors. Activation occurs through phosphorylation of threonine and tyrosine residues (Thr202 and Tyr204 in human Erk1) at the sequence T*EY* by a single upstream MAP kinase kinase (MEK). SAPK/JNK and p38 MAPK are activated by inflammatory cytokines and by a wide variety of cellular stresses. Activation of SAPK/JNK occurs via phosphorylation at Thr183 and Tyr185 by the dual specificity enzyme SEK/MKK4. Both MKK3 and SEK phosphorylate p38 MAPK on tyrosine and threonine at the sequence T*GY* to activate p38 MAP kinase (1-5).

The Silent Synapses Antibody Sampler Kit provides an economical means of detecting the activation of AMPA-type glutamate receptors (AMPAR) using phospho-specific and control antibodies. AMPARs expression can be compared to other synaptic components including NMDA-type glutamate receptor subunit GluN1 and the synaptic scaffolding protein PSD95. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: AMPA- (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), kainate-, and NMDA- (N-methyl-D-aspartate) receptors are the three main families of ionotropic glutamate-gated ion channels. AMPA receptors (AMPARs) are composed of four subunits (GluA1-4), which assemble as homo- or hetero-tetramers to mediate the majority of fast excitatory transmissions in the central nervous system. AMPARs are implicated in synapse formation, stabilization, and plasticity (1). In contrast to GluA2-containing AMPARs, AMPARs that lack GluA2 are permeable to calcium (2). Post-transcriptional modifications (alternative splicing, nuclear RNA editing) and post-translational modifications (glycosylation, phosphorylation) result in a very large number of permutations, fine-tuning the kinetic properties and surface expression of AMPARs representing key pathways to mediate synaptic plasticity (3). During development and mature states, some synapses exhibit “silent synapses” that lack functional AMPAR-mediated transmission. Synapses become “unsilenced” by post-translational modification of GluAs, particularly GluA1, which alters its kinetic properties and/or surface expression while other synaptic components, such as other glutamate receptors like NMDARs and postsynaptic scaffolding proteins like PSD95, remain unaltered. Conversely, reducing the AMPAR kinetic properties and surface expression can silence synapses. Key post-translational modifications implicated in regulating these processes include phosphorylation of GluA1 at Ser831 and Ser845 (4). Research studies have implicated activity-dependent changes in AMPARs in a variety of diseases, including Alzheimer’s, amyotrophic lateral sclerosis (ALS), stroke, and epilepsy (1).

The ER Stress-induced Antibody Sampler Kit contains reagents to investigate ER stress-induced signaling within the cell. The kit contains enough primary antibodies to perform four western blot experiments per primary antibody.
The AMPA Receptor (GluA) Antibody Sampler Kit provides an economical means of evaluating the four subunits of AMPARs. The kit contains enough primary and secondary antibodies to perform two western blot experiments with each antibody.

Background: AMPA- (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), kainate-, and NMDA- (N-methyl-D-aspartate) receptors are the three main families of ionotropic glutamate-gated ion channels. AMPA receptors (AMPARs) are comprised of four subunits (GluR 1-4), which assemble as homo- or hetero-tetramers to mediate the majority of fast excitatory transmissions in the central nervous system. AMPARs are implicated in synapse formation, stabilization, and plasticity (1). In contrast to GluR 2-containing AMPARs, AMPARs that lack GluR 2 are permeable to calcium (2). Post-transcriptional modifications (alternative splicing, nuclear RNA editing) and post-translational modifications (glycosylation, phosphorylation) result in a very large number of permutations, fine-tuning the kinetic properties of AMPARs. Research studies have implicated activity changes in AMPARs in a variety of diseases including Alzheimer’s, amyotrophic lateral sclerosis (ALS), stroke, and epilepsy (1).