20% off purchase of 3 or more products* | Learn More >>

Polyclonal Antibody Glutamate Receptor Binding

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: N-methyl-D-aspartate receptor (NMDAR) forms a heterodimer of at least one NR1 and one NR2A-D subunit. Multiple receptor isoforms with distinct brain distributions and functional properties arise by selective splicing of the NR1 transcripts and differential expression of the NR2 subunits. NR1 subunits bind the co-agonist glycine and NR2 subunits bind the neurotransmitter glutamate. Activation of the NMDA receptor or opening of the ion channel allows flow of Na+ and Ca2+ ions into the cell, and K+ out of the cell (1). Each subunit has a cytoplasmic domain that can be directly modified by the protein kinase/phosphatase (2). PKC can phosphorylate the NR1 subunit (NMDAR1) of the receptor at Ser890/Ser896, and PKA can phosphorylate NR1 at Ser897 (3). The phosphorylation of NR1 by PKC decreases its affinity for calmodulin, thus preventing the inhibitory effect of calmodulin on NMDAR (4). The phosphorylation of NR1 by PKA probably counteracts the inhibitory effect of calcineurin on the receptor (5). NMDAR mediates long-term potentiation and slow postsynaptic excitation, which play central roles in learning, neurodevelopment, and neuroplasticity (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: N-methyl-D-aspartate receptor (NMDAR) forms a heterodimer of at least one NR1 and one NR2A-D subunit. Multiple receptor isoforms with distinct brain distributions and functional properties arise by selective splicing of the NR1 transcripts and differential expression of the NR2 subunits. NR1 subunits bind the co-agonist glycine and NR2 subunits bind the neurotransmitter glutamate. Activation of the NMDA receptor or opening of the ion channel allows flow of Na+ and Ca2+ ions into the cell, and K+ out of the cell (1). Each subunit has a cytoplasmic domain that can be directly modified by the protein kinase/phosphatase (2). PKC can phosphorylate the NR1 subunit (NMDAR1) of the receptor at Ser890/Ser896, and PKA can phosphorylate NR1 at Ser897 (3). The phosphorylation of NR1 by PKC decreases its affinity for calmodulin, thus preventing the inhibitory effect of calmodulin on NMDAR (4). The phosphorylation of NR1 by PKA probably counteracts the inhibitory effect of calcineurin on the receptor (5). NMDAR mediates long-term potentiation and slow postsynaptic excitation, which play central roles in learning, neurodevelopment, and neuroplasticity (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: N-methyl-D-aspartate receptor (NMDAR) forms a heterodimer of at least one NR1 and one NR2A-D subunit. Multiple receptor isoforms with distinct brain distributions and functional properties arise by selective splicing of the NR1 transcripts and differential expression of the NR2 subunits. NR1 subunits bind the co-agonist glycine and NR2 subunits bind the neurotransmitter glutamate. Activation of the NMDA receptor or opening of the ion channel allows flow of Na+ and Ca2+ ions into the cell, and K+ out of the cell (1). Each subunit has a cytoplasmic domain that can be directly modified by the protein kinase/phosphatase (2). PKC can phosphorylate the NR1 subunit (NMDAR1) of the receptor at Ser890/Ser896, and PKA can phosphorylate NR1 at Ser897 (3). The phosphorylation of NR1 by PKC decreases its affinity for calmodulin, thus preventing the inhibitory effect of calmodulin on NMDAR (4). The phosphorylation of NR1 by PKA probably counteracts the inhibitory effect of calcineurin on the receptor (5). NMDAR mediates long-term potentiation and slow postsynaptic excitation, which play central roles in learning, neurodevelopment, and neuroplasticity (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: N-methyl-D-aspartate receptor (NMDAR) forms a heterodimer of at least one NR1 and one NR2A-D subunit. Multiple receptor isoforms with distinct brain distributions and functional properties arise by selective splicing of the NR1 transcripts and differential expression of the NR2 subunits. NR1 subunits bind the co-agonist glycine and NR2 subunits bind the neurotransmitter glutamate. Activation of the NMDA receptor or opening of the ion channel allows flow of Na+ and Ca2+ ions into the cell, and K+ out of the cell (1). Each subunit has a cytoplasmic domain that can be directly modified by the protein kinase/phosphatase (2). PKC can phosphorylate the NR1 subunit (NMDAR1) of the receptor at Ser890/Ser896, and PKA can phosphorylate NR1 at Ser897 (3). The phosphorylation of NR1 by PKC decreases its affinity for calmodulin, thus preventing the inhibitory effect of calmodulin on NMDAR (4). The phosphorylation of NR1 by PKA probably counteracts the inhibitory effect of calcineurin on the receptor (5). NMDAR mediates long-term potentiation and slow postsynaptic excitation, which play central roles in learning, neurodevelopment, and neuroplasticity (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: N-methyl-D-aspartate receptor (NMDAR) forms a heterodimer of at least one NR1 and one NR2A-D subunit. Multiple receptor isoforms with distinct brain distributions and functional properties arise by selective splicing of the NR1 transcripts and differential expression of the NR2 subunits. NR1 subunits bind the co-agonist glycine and NR2 subunits bind the neurotransmitter glutamate. Activation of the NMDA receptor or opening of the ion channel allows flow of Na+ and Ca2+ ions into the cell, and K+ out of the cell (1). Each subunit has a cytoplasmic domain that can be directly modified by the protein kinase/phosphatase (2). PKC can phosphorylate the NR1 subunit (NMDAR1) of the receptor at Ser890/Ser896, and PKA can phosphorylate NR1 at Ser897 (3). The phosphorylation of NR1 by PKC decreases its affinity for calmodulin, thus preventing the inhibitory effect of calmodulin on NMDAR (4). The phosphorylation of NR1 by PKA probably counteracts the inhibitory effect of calcineurin on the receptor (5). NMDAR mediates long-term potentiation and slow postsynaptic excitation, which play central roles in learning, neurodevelopment, and neuroplasticity (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Postsynaptic Density Protein 93 (PSD93) is a member of the PSD subfamily of the membrane-associated guanylate kinase (PSD-MAGUK) proteins. Structurally, it most closely resembles PSD95, consisting of an N-terminal variable segment followed by three PDZ domains, an SH3 domain, and an inactive guanylate kinase (GK) domain (1,2). PSD93 is expressed in neuronal cells and located at the synapse where it interacts with neuronal receptors and proteins including the NMDA receptor (2-4), K+ channels (5,6), and the AMPA receptor (7) to regulate their membrane localization and neuronal signaling. Research studies have implicated PSD93 in postsynaptic related persistent pain induction, making PSD93 a potential target for treatment of this syndrome (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Homer1, Homer2 and Homer3 are scaffolding proteins, composed of an EVH protein–binding domain, a coiled-coil domain and a leucine zipper domain. The EVH domain is a protein-protein binding module that binds to the proline-rich motifs PPXXF, PPXF, and LPSSP of G protein–coupled receptors (GPCRs), inositol 1,4,5-triphosphate (IP3) receptors (IP3Rs), ryanodine receptors, and TRP channels (1-2). The coiled-coil and the leucine zipper domains cause multimerization of Homers and assemble signaling proteins complexes. The Homer1 gene encodes a short isoform (Homer1a, aa 1-186) and two long isoforms (Homer1b, aa 1-354; Homer1c, aa 1-366). Homer1a lacks the coiled-coil domain and leucine zipper, antagonizing multimerization of Homers and thus disassembling signaling proteins complexes (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The SHANK family proteins, also known as proline-rich synapse-associated proteins, consist of SHANK1, SHANK2, and SHANK3. SHANK proteins act as scaffolds at the neuronal post-synaptic density (PSD) (1), where they play a critical role in PSD assembly of excitatory synapses during development (2). While recruitment of SHANK proteins to the synapse is independent of their interaction with Homer (3), proper synaptic targeting of SHANK1 is mediated by interactions between its PDZ domain and PSD proteins (4). At the synapse, SHANK proteins interact with NMDA receptors and metabotropic glutamate receptor complexes (5). Research studies have proposed the involvement of SHANK proteins in autism and neurodegenerative diseases (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Stargazin is a four-pass transmembrane protein related to VDCC (voltage dependent calcium channel) γ subunits and part of the TARP (transmembrane AMPA receptor regulatory protein) family of proteins. TARP proteins can form a complex with AMPA receptors (GluR1-4) and serve as integral auxiliary subunits (1-6).Interactions between stargazin and AMPA receptors are implicated in regulation of receptor surface expression, synaptic clustering and recycling, as well as increased receptor responsiveness to glutamate (1,2,5,6). Stargazin may play a role in the molecular mechanism of AMPAR-mediated inflammatory pain by taking part in signaling pathways that relay pain in the spinal cord (5). Because the protein also modulates the pharmacology of AMPA receptors, it enhances the effects of AMPAR potentiators that have therapeutic potential for a number of mental and neurodegenerative diseases (6).The carboxy terminus of the stargazin protein interacts with the PDZ domains of PSD95 and other membrane-associated guanylate kinase (MAGUK) family members, and together traffic AMPA receptors to the cell surface membrane, anchoring them to the postsynaptic site (1,7). Phosphorylation of stargazin by PKA on Thr321 inhibits this binding (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: Postsynaptic Density protein 95 (PSD95) is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins. These family members consist of an amino-terminal variable segment followed by three PDZ domains, a SH3 domain, and an inactive guanylate kinase (GK) domain. PSD95 is a scaffolding protein involved in the assembly and function of the postsynaptic density complex (1-2). PSD95 participates in synaptic targeting of AMPA receptors through an indirect manner involving Stargazin and related transmembrane AMPA receptor regulatory proteins (TARPs) (3). It is implicated in experience-dependent plasticity and plays an indispensable role in learning (4). Mutations in PSD95 are associated with autism (5).

$303
100 µl
APPLICATIONS
REACTIVITY
Rat

Application Methods: Western Blotting

Background: Postsynaptic Density protein 95 (PSD95) is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins. These family members consist of an amino-terminal variable segment followed by three PDZ domains, a SH3 domain, and an inactive guanylate kinase (GK) domain. PSD95 is a scaffolding protein involved in the assembly and function of the postsynaptic density complex (1-2). PSD95 participates in synaptic targeting of AMPA receptors through an indirect manner involving Stargazin and related transmembrane AMPA receptor regulatory proteins (TARPs) (3). It is implicated in experience-dependent plasticity and plays an indispensable role in learning (4). Mutations in PSD95 are associated with autism (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Flotillins belong to a family of lipid raft-associated integral membrane proteins that carry an evolutionarily conserved domain called the prohibitin homology domain (PHB) (1). Flotillin members are ubiquitously expressed and located in noncaveolar microdomains (lipid rafts) on the plasma membrane where they support signal transduction and regulate lipid raft motility and localization (2-5). Two flotillin members have been described, flotillin-1 and flotillin-2. In addition to its colocalization with lipid rafts on the plasma membrane, flotillin-1 also has been found in compartments of the endocytic and autophagosomal pathways, such as recycling/late endosomes, the Golgi complex, and the nucleus (6,7). Flotillin-2 is mainly localized to the plasma membrane and is prevalent in cell-cell contact sites. However, overexpressed flotillin-2 has also been found in the late endosome (4,8,9). Both flotillin-1 and flotillin-2 are commonly used as lipid raft-associated markers.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Oligophrenin-1 is a RhoGTPase-activating protein encoded by the gene OPHN1 (1). Oligophrenin-1 is composed of an N-terminal BAR domain, a pleckstrin homology domain, a central RhoGAP domain, and three putative C-terminal SH3-binding sites. Oligophrenin-1 plays a role in membrane signaling through interaction of its BAR domain with curved membranes, binding of its pleckstrin homology domain with membrane phosphoinositides, and interaction of the SH3-binding sites with adaptor proteins (1-3). Oligophrenin-1 regulates synaptic vesicle endocytosis (3) and plays an important role in dendritic spine morphogenesis (4). Furthermore, by interacting with the transcription factor Rev-erbα and protecting it from degradation, Oligophrenin-1 participates in the regulation of the circadian rhythm in the hippocampus (5). Research studies have demonstrated an involvement of Oligophrenin-1 in X-linked mental retardation (1).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rab4 is a member of the Ras superfamily of small Rab GTPases implicated in endocytosis. Rab4 is localized at early endosomes/recycling endosomes and functions as a key regulator for sorting/recycling of membrane and proteins (1,2). Rab4 has two isoforms, Rab4A and Rab4B, both of which are localized in similar cellular compartments and are believed to have similar functions (4). Rab4 interacts with several Rab4 effectors in a complex on a special endosome site that promotes membrane/protein recycling (1,3).

$303
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Ras activity is regulated by GAP (GTPase activating proteins) and GEFs (guanine nucleotide exchange factors). Ras-GRF1 (also known as CDC25Mm) is neuronal RasGEF and is regulated by heterotrimeric G proteins and calcium influx (1,2). Binding to calmodulin and phosphorylation stimulate Ras-GRF1 activity (1,2). Multiple PKA phosphorylation sites on Ras-GRF have been identified. Phosphorylation on the two major sites, Ser54 and Ser822, inhibits Ras-GRF activity (3). Carbachol (a muscarinic agonist)-induced phosphorylation on Ser916 is essential but not sufficient for maximal Ras-GRF activity (4). It has been reported that Ras-GRF1 also shows GEF activity toward Rac after phosphorylation by the tyrosine kinase Src (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: CaMKII is an important member of the calcium/calmodulin-activated protein kinase family, functioning in neural synaptic stimulation and T cell receptor signaling (1,2). CaMKII has catalytic and regulatory domains. Ca2+/calmodulin binding to the CaMKII regulatory domain relieves autoinhibition and activates the kinase (3). The activated CaMKII further autophosphorylates at Thr286 to render the kinase constitutively active (3). The threonine phosphorylation state of CaMKII can be regulated through PP1/PKA. PP1 (protein phosphatase 1) dephosphorylates phospho-CaMKII at Thr286. PKA (protein kinase A) prevents phospho-CaMKII (Thr286) dephosphorylation through an inhibitory effect on PP1 (4).

$122
20 µl
$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Western Blotting

Background: Phosphoinositide-specific phospholipase C (PLC) plays a significant role in transmembrane signaling. In response to extracellular stimuli such as hormones, growth factors and neurotransmitters, PLC hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to generate two secondary messengers: inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) (1). At least four families of PLCs have been identified: PLCβ, PLCγ, PLCδ and PLCε. The PLCβ subfamily includes four members, PLCβ1-4. All four members of the subfamily are activated by α- or β-γ-subunits of the heterotrimeric G-proteins (2,3).Phosphorylation is one of the key mechanisms that regulates the activity of PLC. Phosphorylation of Ser1105 by PKA or PKC inhibits PLCβ3 activity (4,5). Ser537 of PLCβ3 is phosphorylated by CaMKII, and this phosphorylation may contribute to the basal activity of PLCβ3. PLCγ is activated by both receptor and nonreceptor tyrosine kinases (6).PLCγ forms a complex with EGF and PDGF receptors, which leads to the phosphorylation of PLCγ at Tyr771, 783 and 1248 (7). Phosphorylation by Syk at Tyr783 activates the enzymatic activity of PLCγ1 (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Ras activity is regulated by GAP (GTPase activating proteins) and GEFs (guanine nucleotide exchange factors). Ras-GRF1 (also known as CDC25Mm) is neuronal RasGEF and is regulated by heterotrimeric G proteins and calcium influx (1,2). Binding to calmodulin and phosphorylation stimulate Ras-GRF1 activity (1,2). Multiple PKA phosphorylation sites on Ras-GRF have been identified. Phosphorylation on the two major sites, Ser54 and Ser822, inhibits Ras-GRF activity (3). Carbachol (a muscarinic agonist)-induced phosphorylation on Ser916 is essential but not sufficient for maximal Ras-GRF activity (4). It has been reported that Ras-GRF1 also shows GEF activity toward Rac after phosphorylation by the tyrosine kinase Src (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Secretory and transmembrane proteins are synthesized on polysomes and translocate into the endoplasmic reticulum (ER) where they are often modified by the formation of disulfide bonds, amino-linked glycosylation and folding. To help proteins fold properly, the ER contains a pool of molecular chaperones including calnexin. Calnexin was first identified as being involved in the assembly of murine class I histocompatibility molecules (1,2). Calnexin is a calcium-binding protein embedded in the ER membrane that retains the newly synthesized glycoproteins inside the ER to ensure proper folding and quality control (3-5). The specificity of calnexin for a subset of glycoproteins is defined by a lectin site, which binds an early oligosaccharide intermediate on the folding glycoprotein (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphoinositide-specific phospholipase C (PLC) plays a significant role in transmembrane signaling. In response to extracellular stimuli such as hormones, growth factors and neurotransmitters, PLC hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to generate two secondary messengers: inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) (1). At least four families of PLCs have been identified: PLCβ, PLCγ, PLCδ and PLCε. The PLCβ subfamily includes four members, PLCβ1-4. All four members of the subfamily are activated by α- or β-γ-subunits of the heterotrimeric G-proteins (2,3).Phosphorylation is one of the key mechanisms that regulates the activity of PLC. Phosphorylation of Ser1105 by PKA or PKC inhibits PLCβ3 activity (4,5). Ser537 of PLCβ3 is phosphorylated by CaMKII, and this phosphorylation may contribute to the basal activity of PLCβ3. PLCγ is activated by both receptor and nonreceptor tyrosine kinases (6).PLCγ forms a complex with EGF and PDGF receptors, which leads to the phosphorylation of PLCγ at Tyr771, 783 and 1248 (7). Phosphorylation by Syk at Tyr783 activates the enzymatic activity of PLCγ1 (8).