20% off purchase of 3 or more products* | Learn More >>

Polyclonal Antibody Growth Cone

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: α-Synuclein is a protein of 140-amino acids expressed abundantly in the brain. α-Synuclein is also the main component of pathogenic Lewy bodies and Lewy neurites. Research studies have shown that mutations of the α-synuclein gene are linked to Parkinson's disease (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: α-Synuclein is a protein of 140-amino acids expressed abundantly in the brain. α-Synuclein is also the main component of pathogenic Lewy bodies and Lewy neurites. Research studies have shown that mutations of the α-synuclein gene are linked to Parkinson's disease (1).

$303
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Ras activity is regulated by GAP (GTPase activating proteins) and GEFs (guanine nucleotide exchange factors). Ras-GRF1 (also known as CDC25Mm) is neuronal RasGEF and is regulated by heterotrimeric G proteins and calcium influx (1,2). Binding to calmodulin and phosphorylation stimulate Ras-GRF1 activity (1,2). Multiple PKA phosphorylation sites on Ras-GRF have been identified. Phosphorylation on the two major sites, Ser54 and Ser822, inhibits Ras-GRF activity (3). Carbachol (a muscarinic agonist)-induced phosphorylation on Ser916 is essential but not sufficient for maximal Ras-GRF activity (4). It has been reported that Ras-GRF1 also shows GEF activity toward Rac after phosphorylation by the tyrosine kinase Src (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Cortactin is a cortical actin binding protein. Its amino-terminal acidic domain (NTA) associates with the Arp2/3 and WASP complex at F-actin branches. The central region of the protein contains six repeats of 37 amino acids that are important in F-actin binding and cross-linking. The carboxy-terminus contains a proline-rich region and an SH3 domain that can interact with numerous scaffolding proteins, such as CortBP1 and Shank3 (1,2). Cortactin is involved in signaling events that coordinate actin reorganization during cell movement. The human cortactin homologue EMS1 is overexpressed in numerous cancers with poor patient prognosis (3). Cortactin may also play an important role in the organization of transmembrane receptors at postsynaptic densities (PSD) and tight junctions by linking scaffolding proteins to the actin network (4).Cortactin is phosphorylated at tyrosine residues 421, 466, and 482. Tyrosine phosphorylation of cortactin regulates cell motility (5), rac1-mediated actin dynamics (6), cadherin-dependent adhesion (7), chemokine trafficking and chemokine-dependent chemotaxis (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Dysbindin, or dystrobrevin-binding protein 1, is a coiled-coil-containing protein expressed in muscle and brain that was identified as a binding partner of dystrobrevin (1). Dysbindin upregulates expression of the pre-synaptic proteins SNAP25 and synapsin I, thereby increasing glutamate release and promoting neuronal viability through Akt signaling. In particular, Akt phosphorylation is suppressed with downregulation of dysbindin and increased with upregulation of dysbindin (2). A nonsense mutation of dysbindin causes Hermansky-Pudlak disease, an autosomal recessive disorder characterized by lysosomal storage defects and prolonged bleeding. (2). Genetic variation in the gene encoding dysbindin is strongly associated with schizophrenia and protein levels are reduced in the prefrontal cortex, midbrain and hippocampus of brains from patients with schizophrenia (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that causes symptoms including hamartomas in brain, kidney, heart, lung and skin (1). The tumor suppressor genes TSC1 and TSC2 encode hamartin and tuberin, respectively (2,3). Hamartin and tuberin form a functional complex and are involved in numerous cellular activities such as vesicular trafficking, regulation of the G1 phase of the cell cycle, steroid hormone regulation, Rho activation and anchoring neuronal intermediate filaments to the actin cytoskeleton (4-9). The combination of genetic, biochemical and cell-biological studies demonstrate that the tuberin/hamartin complex functions as a GTPase-activating protein for the Ras-related small G protein Rheb and thus inhibits targets of rapamycin including mTOR. Cells lacking hamartin or tuberin fail to inhibit phosphorylation of S6 kinase resulting in the activation of S6 ribosomal protein's translation of 5'TOP mRNA transcripts (10). Hamartin is phosphorylated by CDK1 (cdc2) at Thr417, Ser584 and Thr1047 in cells in G2/M phase of the cell cycle (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Developmentally-regulated brain proteins (Drebrins) are cytoplasmic proteins that were originally identified in the brain as F-actin-binding proteins. There are two mammalian isoforms: adult type (A) and embryonic type (E). These isoforms are derived from a single gene through alternative RNA splicing mechanisms (1). Drebrin E has been observed to accumulate in the developmental stage of migrating neurons and in the growing cell processes of neurons. Drebrin A is found at the dendritic spines of mature cortical neurons where it plays a role in synaptic plasticity (2,3). Although drebrins are primarily found in neurons, they have also been found in skeletal muscle, heart, pancreas, and kidney. Research studies have shown that reduced expression of drebrin in the brain could be associated with Alzheimer’s Disease, Down Syndrome (4), and bipolar disorders (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Tau is a heterogeneous microtubule-associated protein that promotes and stabilizes microtubule assembly, especially in axons. Six isoforms with different amino-terminal inserts and different numbers of tandem repeats near the carboxy terminus have been identified, and tau is hyperphosphorylated at approximately 25 sites by Erk, GSK-3, and CDK5 (1,2). Phosphorylation decreases the ability of tau to bind to microtubules. Neurofibrillary tangles are a major hallmark of Alzheimer's disease; these tangles are bundles of paired helical filaments composed of hyperphosphorylated tau. In particular, phosphorylation at Ser396 by GSK-3 or CDK5 destabilizes microtubules. Furthermore, research studies have shown that inclusions of tau are found in a number of other neurodegenerative diseases, collectively known as tauopathies (1,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: TRPV4 is a member of the transient receptor potential vanilloid (TRPV) family of ion channels, and functions as a Ca2+-permeant non-selective cation channel. TRPV4 channels are expressed in many cell types, with particular abundance in sensory and spinal neurons (1). TRPV4 channels play a role in maintaining cellular homeostasis, by facilitating transmembrane Ca2+ transport in response to various stimuli, including thermal stress, fatty acid metabolites, and hypotonicity (2). Mutations in the TRPV4 gene have consequently been attributed to a variety of pathological conditions. For example, constitutively active TRPV4 mutants can lead to excess Ca2+ influx, resulting in toxicity and degeneration of peripheral nerves (3). TRPV4-dependent Ca2+ influx was also shown to mediate strain-induced and TGFβ1-induced epithelial-mesenchymal transition (EMT), suggesting a mechanistic role for TRPV4-mediated Ca2+ transport in fibrosis and oncogenesis (4). Consistent with this, studies in capillary endothelial cells showed that mechanical strain-induced Ca2+ influx through TRPV4 promote focal adhesion and stress fiber remodeling, mediated specifically through integrins, PI3K, and downstream kinases including Rho and ROCK (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Presenilin 1 and presenilin 2 are transmembrane proteins belonging to the presenilin family. Mutation of presenilin genes has been linked to early onset of Alzheimer disease, probably due to presenilin's associated γ-secretase activity for amyloid-β protein processing (1,2). Endogenous presenilin mainly exists in a heterodimeric complex formed from the endoproteolytically processed amino-terminal (34 kDa) and carboxy-terminal (~20, 22, 23 kDa) fragments (CTF) (2,3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Western Blotting

Background: Rac and Cdc42 are members of the Rho-GTPase family. In mammals, Rac exists as three isoforms, Rac1, Rac2 and Rac3, which are highly similar in sequence. Rac1 and Cdc42, the most widely studied of this group, are ubiquitously expressed. Rac2 is expressed in cells of hematopoietic origin, and Rac3, while highly expressed in brain, is also found in many other tissues. Rac and Cdc42 play key signaling roles in cytoskeletal reorganization, membrane trafficking, transcriptional regulation, cell growth and development (1). GTP binding stimulates the activity of Rac/Cdc42, and the hydrolysis of GTP to GDP through the protein's intrinsic GTPase activity, rendering it inactive. GTP hydrolysis is aided by GTPase activating proteins (GAPs), while exchange of GDP for GTP is facilitated by guanine nucleotide exchange factors (GEFs). Another level of regulation is achieved through the binding of RhoGDI, a guanine nucleotide dissociation inhibitor, which retains Rho family GTPases, including Rac and Cdc42, in their inactive GDP-bound state (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: FE65, FE65L1 and FE65L2 are members of the FE65 protein family. FE65 is an adaptor protein with protein-protein interaction domains including a WW domain followed by two phosphotyrosine interaction domains (PID1 and PID2) (1). Amyloid beta precursor protein (APP) binds to PID2 and undergoes sequential cleavage. First alpha-/beta secretases cleave and release the ectodomain into the extracellular environment. Subsequent processing by the gamma-secretase complex results in the APP intracellular domain (AICD) and the beta-amyloid peptides. The latter A-beta fragments form the main components of amyloid plaques in patients with Alzheimer's disease (2). FE65 family members can regulate APP processing, resulting in elevated levels of A-beta (3). Double knock-out mice of FE65 and FE65L1 display a phenotype that occurs in animals lacking APP family members, supporting a functional interaction between FE65 and APP (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein tyrosine kinase Pyk2, also called CAKβ, RAFTK and CADTK, is a nonreceptor tyrosine kinase structurally related to focal adhesion kinase (FAK) (1-4). Pyk2 is predominantly expressed in cells derived from hematopoietic lineages and in the central nervous system. Pyk2 is one of the signaling mediators for the G-protein-coupled receptors and MAP kinase signaling pathway. It plays an important role in cell spreading and migration (5-7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Ack1 and Ack2 (activated cdc42-associated kinase 1 and 2) are non-receptor tyrosine kinases that consist of a tyrosine kinase core, an SH3 domain, a cdc42/Rac-binding (CRIB) domain, a Ralt homology region and a proline-rich region (1,2). Ack1 and 2 are the only two tyrosine kinases known to interact with cdc42. Both Acks are activated by growth factors including EGF and PDGF, as well as by activated integrins through cell adhesion, and may serve to link receptor tyrosine kinase or G protein-coupled receptor signaling with cdc42. Acks may regulate cell growth, morphology and motility (3,4). Recent findings indicate that Ack1 may play a role in prostate tumorigenesis, making it a potential drug target for this type of cancer (5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Dicer is a member of the RNase III family that specifically cleaves double-stranded RNAs to generate microRNAs (miRNAs) (1). After long primary transcript pri-miRNAs are processed to stem-looped pre-miRNAs by Drosha (2), pre-miRNAs are transported to the cytoplasm and further processed by Dicer to produce 22-nucleotide mature miRNAs (3). The mature miRNA then becomes a part of the RNA-Induced Silencing Complex (RISC) and can bind to the 3' UTR of the target mRNA (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Nonmuscle myosin is an actin-based motor protein essential to cell motility, cell division, migration, adhesion, and polarity. The holoenzyme consists of two identical heavy chains and two sets of light chains. The light chains (MLCs) regulate myosin II activity and stability. The heavy chains (NMHCs) are encoded by three genes, MYH9, MYH10, and MYH14, which generate three different nonmuscle myosin II isoforms, IIa, IIb, and IIc, respectively (reviewed in 1). While all three isoforms perform the same enzymatic tasks, binding to and contracting actin filaments coupled to ATP hydrolysis, their cellular functions do not appear to be redundant and they have different subcellular distributions (2-5). The carboxy-terminal tail domain of myosin II is important in isoform-specific subcellular localization (6). Research studies have shown that phosphorylation of myosin IIa at Ser1943 contributes to the regulation of breast cancer cell migration (7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Collapsin Response Mediator Protein-2 (CRMP-2) is expressed at high levels in the developing nervous system and plays a critical role in axonal outgrowth by specifying axon/dendrite fate and establishing neuronal polarity (1,2). CRMP-2 enhances axon elongation and branching by binding to tubulin heterodimers to promote microtubule assembly (3). GSK-3β inactivates CRMP-2 by phosphorylating it at Thr514. CRMP-2 is primed following phosphorylation at Ser522 by CDK5 and at Thr518 by GSK-3β (2). Phosphorylation of CRMP-2, which decreases tubulin binding ability, can be inhibited by NT-3 and BDNF through the PI3 kinase/Akt pathway (2). CRMP-2 also mediates semaphorin-induced growth cone collapse (4). Hyperphosphorylation of CRMP-2 is found in Alzheimer disease plaques with concurrent elevated GSK-3β activity in these patients (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The Silent Information Regulator (SIR2) family of genes is a highly conserved group of genes that encode nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases, also known as class III histone deacetylases. The first discovered and best characterized of these genes is Saccharomyces cerevisiae SIR2, which is involved in silencing of mating type loci, telomere maintenance, DNA damage response, and cell aging (1). SirT1, the mammalian ortholog of Sir2, is a nuclear protein implicated in the regulation of many cellular processes, including apoptosis, cellular senescence, endocrine signaling, glucose homeostasis, aging, and longevity. Targets of SirT1 include acetylated p53 (2,3), p300 (4), Ku70 (5), forkhead (FoxO) transcription factors (5,6), PPARγ (7), and the PPARγ coactivator-1α (PGC-1α) protein (8). Deacetylation of p53 and FoxO transcription factors represses apoptosis and increases cell survival (2,3,5,6). Deacetylation of PPARγ and PGC-1α regulates the gluconeogenic/glycolytic pathways in the liver and fat mobilization in white adipocytes in response to fasting (7,8). SirT1 deacetylase activity is inhibited by nicotinamide and activated by resveratrol. In addition, SirT1 activity may be regulated by phosphorylation, as it is phosphorylated at Ser27 and Ser47 in vivo; however, the function of these phosphorylation sites has not yet been determined (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: IQGAPs are scaffolding proteins involved in mediating cytoskeletal function. They contain multiple protein interaction domains and bind to a growing number of molecules including actin, myosin light chain, calmodulin, E-cadherin, and β-catenin (reviewed in 1). Through their GAP-related domains, they bind the small GTPases Rac1 and cdc42. IQGAPs lack GAP activity, however, and regulate small GTPases by stabilizing their GTP-bound (active) forms (2,3). Research studies have shown that the function and distribution of the IQGAP proteins widely vary. IQGAP1 is ubiquitously expressed and has been found to interact with APC (4) and the CLIP170 complex (5) in response to small GTPases, promoting cell polarization and migration. Additional research studies have suggested that IQGAP1 could play a part in the invasiveness of some cancers (6-8). IQGAP2, which is about 60% identical to IQGAP1, is expressed primarily in liver (3), but lower levels have been detected in the prostate, kidney, thyroid, stomach, and testis (9,10). Research studies have shown that IQGAP2 displays tumor suppressor properties (11). Less is known about the function of IQGAP3, but this protein is present in the lung, brain, small intestine, and testis (9) and is only expressed in proliferating cells (12), suggesting a role in cell growth and division.

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Guinea Pig, Human, Mouse

Application Methods: Western Blotting

Background: The p21-activated kinase (PAK) family of serine/threonine kinases is engaged in multiple cellular processes, including cytoskeletal reorganization, MAPK signaling, apoptotic signaling, control of phagocyte NADPH oxidase, and growth factor-induced neurite outgrowth (1,2). Several mechanisms that induce PAK activity have been reported. Binding of Rac/Cdc42 to the CRIB (or PBD) domain near the amino terminus of PAK causes autophosphorylation and conformational changes in PAK (1). Phosphorylation of PAK1 at Thr423 by PDK induces activation of PAK1 (3). Several autophosphorylation sites have been identified, including Ser199 and Ser204 of PAK1 and Ser192 and Ser197 of PAK2 (4,5). Because the autophosphorylation sites are located in the amino-terminal inhibitory domain, it has been hypothesized that modification in this region prevents the kinase from reverting to an inactive conformation (6). Research indicates that phosphorylation at Ser144 of PAK1 or Ser139 of PAK3 (located in the kinase inhibitory domain) affects kinase activity (7). Phosphorylation at Ser21 of PAK1 or Ser20 of PAK2 regulates binding with the adaptor protein Nck (8). PAK4, PAK5, and PAK6 have lower sequence similarity with PAK1-3 in the amino-terminal regulatory region (9). Phosphorylation at Ser474 of PAK4, a site analogous to Thr423 of PAK1, may play a pivotal role in regulating the activity and function of PAK4 (10).