Interested in promotions? | Click here >>

Polyclonal Antibody Immunofluorescence Immunocytochemistry Lipid Binding

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Triacylglycerol is stored in lipid droplets as a primary energy reserve. Perilipin is localized at the periphery of lipid droplets and serves as a protective coating against lipases (1-3). Evidence suggests that PKA regulates lipolysis by phosphorylating perilipin (1,2,4,5). Phosphorylation of perilipin results in the conformational change that exposes lipid droplets to endogenous lipases, such as hormone-sensitive lipases (2). Hence, perilipin plays a pivotal role in lipid storage (2,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Triacylglycerol is stored in lipid droplets as a primary energy reserve. Perilipin is localized at the periphery of lipid droplets and serves as a protective coating against lipases (1-3). Evidence suggests that PKA regulates lipolysis by phosphorylating perilipin (1,2,4,5). Phosphorylation of perilipin results in the conformational change that exposes lipid droplets to endogenous lipases, such as hormone-sensitive lipases (2). Hence, perilipin plays a pivotal role in lipid storage (2,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Valosin-containing protein (VCP) is a highly conserved and abundant 97 kDa protein that belongs to the AAA (ATPase associated with a variety of cellular activities) family of proteins. VCP assembles as a homo-hexamer, forming a ring with a channel at its center (1,2,3). VCP homo-hexamers associate with a variety of protein cofactors to form many distinct protein complexes, which act as chaperones to unfold proteins and transport them to specific cellular compartments or to the proteosome (4). These protein complexes participate in many cellular functions, including vesicle transport and fusion, fragmentation and reassembly of the golgi stacks during mitosis, nuclear envelope formation and spindle disassembly following mitosis, cell cycle regulation, DNA damage repair, apoptosis, B- and T-cell activation, NF-κB-mediated transcriptional regulation, endoplasmic reticulum (ER)-associated degradation and protein degradation (4). VCP appears to localize mainly to the endoplasmic reticulum; however, tyrosine phosphorylation is associated with relocalization to the centrosome during mitosis (5). In addition, following cellular exposure to ionizing radition, VCP is phosphorylated at Ser784 in an ATM-dependent manner and accumulates in the nucleus at sites of double-stranded DNA breaks (DSBs) (6). Exposure to other types of DNA damaging agents such as UV light, bleomycin or doxorubicin results in phosphorylation of VCP by ATR and DNA-PK in an ATM-independent manner (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Dynamin-related protein 1 (DRP1) is a member of the dynamin superfamily of GTPases. Members of this family have diverse cellular functions including vesicle scission, organelle fission, viral resistance, and intracellular trafficking (reviewed in 1). DRP1 affects mitochondrial morphology and is important in mitochondrial and peroxisomal fission in mammalian cells (2-5). The yeast ortholog of DRP1 clusters into a spiral-shaped structure on the mitochondrial membrane at the site of fission (reviewed in 6), and this structure is likely conserved in mammalian cells (3). The division of the mitochondria, which is required for apoptosis, as well as normal cell growth and development is controlled, in part, by the phosphorylation of DRP1 at Ser616 by Cdk1/cyclin B and at Ser637 by protein kinase A (PKA) (reviewed in 6). When phosphorylated at Ser616, DRP1 stimulates mitochondrial fission during mitosis. Conversely, fission is inhibited when DRP1 is phosphorylated at Ser637 (reviewed in 6). Dephosphorylation at Ser637 by calcineurin reverses this inhibition (7). In addition to phosphorylation, sumoylation of DRP1 is also an enhancer of mitochondrial fission (8). Balancing fission and fusion events is essential for proper mitochondrial function. Research studies have demonstrated mitochondrial defects in a variety of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease (reviewed in 6).