Microsize antibodies for $99 | Learn More >>

Polyclonal Antibody Immunofluorescence Immunocytochemistry Rho Gtpase Binding

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The dynamic polymerization and depolymerization of actin filaments, a process governed by external and internal signaling events, is vital for cell motility (immune cell function, migration, invasion, metastasis, angiogenesis), cell division and adhesion. Among the many regulators of actin dynamics are profilins. Profilins are conserved actin binding proteins that affect the rate of actin polymerization by binding actin monomers and promoting the exchange of ADP for ATP (reviewed in 1). Profilins bind to proteins involved in the regulation of actin dynamics including palladin (2), dynamin-1 (3), VASP (4) and N-WASP (5). In mice, knockout of the ubiquitously expressed profilin-1 indicates that the protein is essential for embryonic development (6). Profilin-2 is primarily expressed in brain and functions in the regulation of neurite outgrowth (7), membrane trafficking and endocytosis (3). The recently cloned profilin-3 is expressed in kidney and testes (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Rho family small GTPases, including Rho, Rac and cdc42, act as molecular switches, regulating processes such as cell migration, adhesion, proliferation and differentiation. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of bound GDP for GTP, and inhibited by GTPase activating proteins (GAPs), which catalyze the hydrolysis of GTP to GDP. A third level of regulation is provided by the stoichiometric binding of Rho GDP dissociation inhibitor (RhoGDI). RhoGDI affects Rho activity by inhibiting nucleotide exchange and membrane association, regulating activity and localization (Reviewed in 1, 2). The inhibitory and shuttling functions of RhoGDI have been uncoupled using mutant forms of RhoGDI (3). Phosphorylation of GDIs and/or GTPases can modulate their affinity for each other and, therefore, GTPase mediated signaling. PAK1 phosphorylation of RhoGDI at serines 101 and 174 causes release and activation of Rac1, but not RhoA (4).