Microsize antibodies for $99 | Learn More >>

Polyclonal Antibody Immunoprecipitation Cysteine-Type Endopeptidase Activity

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents. Control of autophagy was largely discovered in yeast and involves proteins encoded by a set of autophagy-related genes (Atg) (1). Formation of autophagic vesicles requires a pair of essential ubiquitin-like conjugation systems, Atg12-Atg5 and Atg8-phosphatidylethanolamine (Atg8-PE), which are widely conserved in eukaryotes (2). Numerous mammalian counterparts to yeast Atg proteins have been described, including three Atg8 proteins (GATE-16, GABARAP, and LC3) and four Atg4 homologs (Atg4A/autophagin-2, Atg4B/autophagin-1, Atg4C/autophagin-3, and Atg4D/autophagin-4) (3-5). The cysteine protease Atg4 is pivotal to autophagosome membrane generation and regulation. Atg4 primes the Atg8 homolog for lipidation by cleaving its carboxy terminus and exposing its glycine residue for E1-like enzyme Atg7. The Atg8 homolog is transferred to the E2-like enzyme Atg3 before forming the Atg8-PE conjugate. During later stages of autophagy, Atg4 can reverse this lipidation event by cleaving PE, thereby recycling the Atg8 homolog (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents. Control of autophagy was largely discovered in yeast and involves proteins encoded by a set of autophagy-related genes (Atg) (1). Formation of autophagic vesicles requires a pair of essential ubiquitin-like conjugation systems, Atg12-Atg5 and Atg8-phosphatidylethanolamine (Atg8-PE), which are widely conserved in eukaryotes (2). Numerous mammalian counterparts to yeast Atg proteins have been described, including three Atg8 proteins (GATE-16, GABARAP, and LC3) and four Atg4 homologs (Atg4A/autophagin-2, Atg4B/autophagin-1, Atg4C/autophagin-3, and Atg4D/autophagin-4) (3-5). The cysteine protease Atg4 is pivotal to autophagosome membrane generation and regulation. Atg4 primes the Atg8 homolog for lipidation by cleaving its carboxy terminus and exposing its glycine residue for E1-like enzyme Atg7. The Atg8 homolog is transferred to the E2-like enzyme Atg3 before forming the Atg8-PE conjugate. During later stages of autophagy, Atg4 can reverse this lipidation event by cleaving PE, thereby recycling the Atg8 homolog (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Caspase-3 (CPP-32, Apoptain, Yama, SCA-1) is a critical executioner of apoptosis, as it is either partially or totally responsible for the proteolytic cleavage of many key proteins, such as the nuclear enzyme poly (ADP-ribose) polymerase (PARP) (1). Activation of caspase-3 requires proteolytic processing of its inactive zymogen into activated p17 and p12 fragments. Cleavage of caspase-3 requires the aspartic acid residue at the P1 position (2).

$117
20 µl
$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Caspase-3 (CPP-32, Apoptain, Yama, SCA-1) is a critical executioner of apoptosis, as it is either partially or totally responsible for the proteolytic cleavage of many key proteins, such as the nuclear enzyme poly (ADP-ribose) polymerase (PARP) (1). Activation of caspase-3 requires proteolytic processing of its inactive zymogen into activated p17 and p12 fragments. Cleavage of caspase-3 requires the aspartic acid residue at the P1 position (2).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Caspase-7 (CMH-1, Mch3, ICE-LAP3) has been identified as a major contributor to the execution of apoptosis (1-4). Caspase-7, like caspase-3, is an effector caspase that is responsible for cleaving downstream substrates such as (ADP-ribose) polymerase and PARP (1,3). During apoptosis, caspase-7 is activated through proteolytic processing by upstream caspases at Asp23, Asp198, and Asp206 to produce the mature subunits (1,3). Similar to caspase-2 and -3, caspase-7 preferentially cleaves substrates following the recognition sequence DEVD (5).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Caspase-9 (ICE-LAP6, Mch6) is an important member of the cysteine aspartic acid protease (caspase) family (1,2). Upon apoptotic stimulation, cytochrome c released from mitochondria associates with the 47 kDa procaspase-9/Apaf-1. Apaf-1 mediated activation of caspase-9 involves intrinsic proteolytic processing resulting in cleavage at Asp315 and producing a p35 subunit. Another cleavage occurs at Asp330 producing a p37 subunit that can serve to amplify the apoptotic response (3-6). Cleaved caspase-9 further processes other caspase members, including caspase-3 and caspase-7, to initiate a caspase cascade, which leads to apoptosis (7-10).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Caspase-9 (ICE-LAP6, Mch6) is an important member of the cysteine aspartic acid protease (caspase) family (1,2). Upon apoptotic stimulation, cytochrome c released from mitochondria associates with the 47 kDa procaspase-9/Apaf-1. Apaf-1 mediated activation of caspase-9 involves intrinsic proteolytic processing resulting in cleavage at Asp315 and producing a p35 subunit. Another cleavage occurs at Asp330 producing a p37 subunit that can serve to amplify the apoptotic response (3-6). Cleaved caspase-9 further processes other caspase members, including caspase-3 and caspase-7, to initiate a caspase cascade, which leads to apoptosis (7-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Mucosa-associated lymphoid tissue translocation gene 1 (MALT1) is a paracaspase that is a critical mediator of T-cell receptor activation of NF-κB and may contribute to the progression of MALT lymphomas (1-4). It contains two immunoglobulin-like domains, an amino-terminal death domain and a carboxy-terminal caspase-like domain. Association of MALT1 with Bcl-10 and CARD11/Carma1 leads to activation of IKK and subsequent stimulation of NF-κB, resulting in increased proliferation and inhibition of apoptosis (5,6). A common translocation in MALT B-cell non-Hodgkin lymphomas t(11;18)(q21;q21) results in the fusion of the amino terminus of API2 (c-IAP2), a member of the inhibitor of apoptosis protein family, to the carboxy terminus of MALT1 (1,2). The API2-MALT1 fusion protein likely leads to deregulation of NF-κB, contributing to increased oncogenic potential (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Secreted Frizzled-related proteins (SFRPs) display homology and structural similarity to the extracellular cysteine-rich Wnt-binding domain of the G protein-coupled receptor Frizzled (1,2). To date, five distinct SFRPs (SFRP1 to 5) have been found in mammalian cells. These secreted proteins typically act as antagonists to Wnt signaling by directly binding and inhibiting Wnt proteins, or by binding Frizzled to block Wnt protein interaction with the receptor (3). The various SFRPs bind and regulate Wnt proteins differentially; these proteins also display distinct expression patterns as they play important roles in regulating development (4-7). SFRP proteins appear to act as tumor suppressors, with loss of expression or function correlating with many invasive forms of cancer. Deletion of the corresponding SFRP1 gene and promoter hypermethylation leading to gene silencing has been reported in a number of cancers. Abnormal expression of SRFP1 and other Wnt signaling proteins is associated with some cases of retinitis pigmentosa (reviewed in 8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Ubiquitinating enzymes (UBEs) catalyze protein ubiquitination, a reversible process countered by deubiquitinating enzyme (DUB) action (1,2). Five DUB subfamilies are recognized, including the USP, UCH, OTU, MJD, and JAMM enzymes. USP10 possesses amino acid sequences that match the consensus cysteine and histidine boxes representative of the USP family of deubiquitinating enzymes. At the posttranslational level, USP10 appears to be regulated through both protein-protein interactions and phosphorylation. Indeed, interaction of USP10 with Ras-GAP SH3 domain binding protein (G3BP) has been found to inhibit its ability to catalyze the disassembly of ubiquitin chains (3). Furthermore, ATM-mediated phosphorylation of USP10 at Thr42 and Ser337 was shown to promote USP10 stabilization and redistribution from the cytoplasm to the nucleus, where it functions in p53 deubiquitination, stabilization, and activation in response to genotoxic stress (4). Recently, it was shown that USP10 works in concert with USP13 and Vps34 complexes. USP10, along with USP13, appears to deubiquitinate Vps34 complexes to regulate the levels of this class III PI3K. Beclin-1, another component of these complexes, functions to regulate the stability of USP13, which can deubiquitinate and stabilize the levels of USP10. Therefore, Beclin-1, can indirectly regulate p53 stability by controlling the DUB activity of USP10 (5). USP10 also functions in the endosomal compartment, where it has been shown to deubiquitinate CFTR in order to enhance its endocytic recycling and cell surface expression (6,7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Ubiquitinating enzymes (UBEs) catalyze protein ubiquitination, a reversible process countered by deubiquitinating enzyme (DUB) action (1,2). Five DUB subfamilies are recognized, including the USP, UCH, OTU, MJD, and JAMM enzymes. The deubiquitinating enzyme ubiquitin-specific protease 8 (USP8/UBPy) is a cysteine protease belonging to the USP/UBP subfamily. Research studies have shown that USP8 is an essential growth-regulated enzyme indespensible for cell proliferation and survival (3,4). Indeed, conditional knock-out of murine USP8 was shown to promote a dramatic loss in expression of receptor tyrosine kinases, including EGFR, ErbB3, and c-Met (4). In agreement with these findings, USP8 inactivation leads to enhanced ubiquitination of ligand-activated EGFR (5,6). Furthermore, phosphorylation of USP8 at Ser680 results in its binding of 14-3-3, catalytic inactivation, and reduced EGFR deubiquitination (7). It appears as though USP8, in conjunction with components of the ESCRT-0 complex, plays an integral role in the early endosomal sorting machinery that functions to protect EGFR from lysosomal degradation (8,9).