Microsize antibodies for $99 | Learn More >>

Polyclonal Antibody Immunoprecipitation Immune Response

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). Combinatorial interactions of different E2 and E3 proteins result in substrate specificity (4). Recent data suggest that activated E2 associates transiently with E3, and that the dissociation is a critical step for ubiqitination (5). Cullin homolog 1 (CUL1), the mammalian homolog of Cdc53 from yeast, is a molecular scaffold of the SCF (Skp1/CUL1/F-box) E3 ubiquitin ligase protein complex. Thus, CUL1 and its family members function in ubiquitin dependent proteolysis (6). In particular, CUL1 has been shown to mediate ubiquitin dependent degradation of p21 Waf1/Cip1, cyclin D and IkappaB-alpha (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: ZBP1 (Z-DNA binding protein 1), also referred to as DAI (DNA-dependent activator of IFN-regulatory factors) and DLM-1, is a nucleotide binding protein that plays a role in tumorigenesis and innate immune responses to viral infection (1). It is expressed at high levels in lymphatic tissues and intestine and is induced in macrophages by interferon gamma or by LPS (2,3). It contains two amino terminal Z-alpha domains that bind to left-handed Z-DNA and Z-RNA (4,5). In addition, an adjacent domain binds right-handed B-DNA that allows for it to function as a cytosolic DNA sensor in innate immune responses, triggering activation of TBK1 and IRF-3, and subsequent production of type I interferons (6,7). Furthermore, ZBP1 can trigger the activation of NF-κB through interaction with the RIP homotypic interaction motif (RHIM) of RIPK1 and RIPK3 (8). ZBP1 binding to RIPK3 can also induce a process of programmed necrosis termed necroptosis (9). In contrast, its interaction with RIPK1 can repress necroptosis (10,11). The mRNA binding activity of ZBP1 is also thought to play a role in tumorigenesis. ZBP1 is repressed in metastatic breast cancer, which leads to dysregulation of mRNA targets involved in proliferation and metastasis (12,13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: TRAFs (TNF receptor-associated factors) are a family of multifunctional adaptor proteins that bind to surface receptors and recruit additional proteins to form multiprotein signaling complexes capable of promoting cellular responses (1-3). Members of the TRAF family share a common carboxy-terminal "TRAF domain", which mediates interactions with associated proteins; many also contain amino-terminal Zinc/RING finger motifs. The first TRAFs identified, TRAF1 and TRAF2, were found by virtue of their interactions with the cytoplasmic domain of TNF-receptor 2 (TNFRII) (4). The six known TRAFs (TRAF1-6) act as adaptor proteins for a wide range of cell surface receptors and participate in the regulation of cell survival, proliferation, differentiation, and stress responses.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: SH2-containing inositol phosphatase 1 (SHIP1) is a hematopoietic phosphatase that hydrolyzes phosphatidylinositol-3,4,5-triphosphate to phosphatidylinositol-3,4-bisphosphate (1). SHIP1 is a cytosolic phosphatase with an SH2 domain in its amino terminus and two NPXY Shc binding motifs in its carboxy terminus (1,2). Upon receptor cross-linking, SHIP is first recruited to the membrane junction through binding of its SH2 domain to the phospho-tyrosine in the ITIM motif (2), followed by tyrosine phosphorylation on the NPXY motif (2). The membrane relocalization and phosphorylation on the NPXY motif is essential for the regulatory function of SHIP1 (3-5). Its effect on calcium flux, cell survival, growth, cell cycle arrest, and apoptosis is mediated through the PI3K and Akt pathways (3-5). Tyr1021 is located in one of the NPXY motifs in SHIP1, and its phosphorylation is important for SHIP1 function (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphoinositide-specific phospholipase C (PLC) plays a significant role in transmembrane signaling. In response to extracellular stimuli such as hormones, growth factors and neurotransmitters, PLC hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to generate two secondary messengers: inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) (1). At least four families of PLCs have been identified: PLCβ, PLCγ, PLCδ and PLCε. The PLCβ subfamily includes four members, PLCβ1-4. All four members of the subfamily are activated by α- or β-γ-subunits of the heterotrimeric G-proteins (2,3).Phosphorylation is one of the key mechanisms that regulates the activity of PLC. Phosphorylation of Ser1105 by PKA or PKC inhibits PLCβ3 activity (4,5). Ser537 of PLCβ3 is phosphorylated by CaMKII, and this phosphorylation may contribute to the basal activity of PLCβ3. PLCγ is activated by both receptor and nonreceptor tyrosine kinases (6).PLCγ forms a complex with EGF and PDGF receptors, which leads to the phosphorylation of PLCγ at Tyr771, 783 and 1248 (7). Phosphorylation by Syk at Tyr783 activates the enzymatic activity of PLCγ1 (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The cellular oncogene c-Yes and its viral homologue v-Yes (the transforming gene of Yamaguchi 73 and Esh avian sarcoma viruses) encode a 60 kDa, cytoplasmic, membrane-associated, protein-tyrosine kinase (1). Yes belongs to the Src kinase family and is ubiquitously expressed in many tissues and cells. Like other Src family members, Yes contains several conserved functional domains such as an N-terminal myristoylation sequence for membrane targeting, SH2 and SH3 domains, a kinase domain, and a C-terminal non-catalytic domain (2). Although several lines of evidence support redundancy in signaling between Yes and other Src family kinases, there is also a growing body of evidence indicating specificity in Yes signaling (2). Yes is activated downstream of a multitude of cell surface receptors, including receptor tyrosine kinases, G protein-coupled receptors, and cytokine receptors (3). In addition, both Yes and Src kinases are activated during the cell cycle transition from G2 to M phase (3). Investigators have found that dysfunction of Yes is associated with the development of various cancers (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Grb-associated binder (Gab) family is a family of adaptor proteins recruited by a wide variety of receptor tyrosine kinases (RTKs) such as EGFR, HGFR, insulin receptor, cytokine receptor and B cell antigen receptors. Upon stimulation of RTKs by their cognate ligand, Gab is recruited to the plasma membrane where it is phosphorylated and functions as a scaffold (1-4). Multiple tyrosine phosphorylation sites of Gab1 protein have been identified (5). Phosphorylation of Tyr472 regulates its binding to p85 PI3 kinase (6,7). Phosphorylation of Gab1 at Tyr307, Tyr373 and Tyr407 modulates its association to PLCγ (8). Phosphorylation of Tyr627 and Tyr659 is required for Gab1 binding to and activation of the protein tyrosine phosphatase SHP2 (6,9).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: B cell linker protein (BLNK), also known as SLP-65 or BASH, is an adaptor molecule that plays key roles in B cell activation and B cell antigen receptor (BCR) engagement. BLNK acts at the interface between BCR-associated Syk and downstream signaling cascades (1,2). BLNK has multiple SH2 binding motifs (YXXP) at its amino terminus and an SH2 domain at its carboxy terminus. After BCR ligation, BLNK is phosphorylated by Syk at multiple YXXP motifs including Tyr72, Tyr84, Tyr96, and Tyr178 (1). These phosphorylated motifs provide docking sites for signaling molecules, such as BTK, PLCγ, and Vav. These signaling molecules bind to BLNK through their SH2 domains and together activate downstream signaling pathways (3,4). Through its SH2 domain, BLNK can also interact with tyrosine-phosphorylated targets, such as HPK1, thereby recruiting them to the BCR complex for signaling (5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: SHP-2 (PTPN11) is a ubiquitously expressed, nonreceptor protein tyrosine phosphatase (PTP). It participates in signaling events downstream of receptors for growth factors, cytokines, hormones, antigens, and extracellular matrices in the control of cell growth, differentiation, migration, and death (1). Activation of SHP-2 and its association with Gab1 is critical for sustained Erk activation downstream of several growth factor receptors and cytokines (2). In addition to its role in Gab1-mediated Erk activation, SHP-2 attenuates EGF-dependent PI3 kinase activation by dephosphorylating Gab1 at p85 binding sites (3). SHP-2 becomes phosphorylated at Tyr542 and Tyr580 in its carboxy-terminus in response to growth factor receptor activation (4). These phosphorylation events are thought to relieve basal inhibition and stimulate SHP-2 tyrosine phosphatase activity (5). Mutations in the corresponding gene result in a pair of clinically similar disorders (Noonan syndrome and LEOPARD syndrome) that may result from abnormal MAPK regulation (6).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: SHP-2 (PTPN11) is a ubiquitously expressed, nonreceptor protein tyrosine phosphatase (PTP). It participates in signaling events downstream of receptors for growth factors, cytokines, hormones, antigens, and extracellular matrices in the control of cell growth, differentiation, migration, and death (1). Activation of SHP-2 and its association with Gab1 is critical for sustained Erk activation downstream of several growth factor receptors and cytokines (2). In addition to its role in Gab1-mediated Erk activation, SHP-2 attenuates EGF-dependent PI3 kinase activation by dephosphorylating Gab1 at p85 binding sites (3). SHP-2 becomes phosphorylated at Tyr542 and Tyr580 in its carboxy-terminus in response to growth factor receptor activation (4). These phosphorylation events are thought to relieve basal inhibition and stimulate SHP-2 tyrosine phosphatase activity (5). Mutations in the corresponding gene result in a pair of clinically similar disorders (Noonan syndrome and LEOPARD syndrome) that may result from abnormal MAPK regulation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: MHC class II (MHC-II) proteins play critical roles in cellular immune responses and their expression is mainly regulated by the non-DNA binding transcription factor CIITA (MHC class II transactivator) (1,2). CIITA expression is upregulated by IFN-γ and it in turn enchances MHC-II expression and represses collagen expression (3,4). CIITA has a limited number of transcriptional targets, most of which are involved in MHC-mediated antigen presentation (5). Mutations in the CIITA are associated with the hereditary immunodeficiency disease Bare Lymphocyte Syndrome (BLS) which is characterized by a nearly complete absence of MHC-II expression (also referred to as MHC-II deficiency) (6,7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Fibroblast growth factor receptor substrate 2 (FRS2, also called Suc-associated neurotrophic factor-induced tyrosine-phosphorylated target or SNT) participates in the transmission of extracellular signals from the fibroblast growth factor receptor (FGFR). Activation of the FGFR leads to tyrosine phosphorylation of FRS2 (1). Two FRS2 family members have been identified, FRS2-alpha (SNT1) and FRS2-beta (SNT2) (2), which are phosphorylated by these RTKs. Once they are phosphorylated, they recruit SH2 domain-containing proteins including Grb2 and SHP-2 (3,4), mediating downstream signaling. Tyr436 is required for efficient SHP-2 recruitment (5), whereas Tyr196 functions as a docking site for Grb2-Sos complexes (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphoinositide-specific phospholipase C (PLC) plays a significant role in transmembrane signaling. In response to extracellular stimuli such as hormones, growth factors and neurotransmitters, PLC hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to generate two secondary messengers: inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) (1). At least four families of PLCs have been identified: PLCβ, PLCγ, PLCδ and PLCε. The PLCβ subfamily includes four members, PLCβ1-4. All four members of the subfamily are activated by α- or β-γ-subunits of the heterotrimeric G-proteins (2,3).Phosphorylation is one of the key mechanisms that regulates the activity of PLC. Phosphorylation of Ser1105 by PKA or PKC inhibits PLCβ3 activity (4,5). Ser537 of PLCβ3 is phosphorylated by CaMKII, and this phosphorylation may contribute to the basal activity of PLCβ3. PLCγ is activated by both receptor and nonreceptor tyrosine kinases (6).PLCγ forms a complex with EGF and PDGF receptors, which leads to the phosphorylation of PLCγ at Tyr771, 783 and 1248 (7). Phosphorylation by Syk at Tyr783 activates the enzymatic activity of PLCγ1 (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: G-protein-coupled receptor kinase 2 (GRK2), also known as beta-adrenergic receptor kinase 1 (beta-ARK1), is a member of the GRK family, which phosphorylates the activated form of G-protein-coupled receptors (GPCRs) and initiates the desensitization process of GPCR (1). GRK2 kinase activity and cellular localization are tightly regulated by interactions with activated receptors, G-beta and G-gamma subunits, adaptor proteins, phospholipids, caveolin and calmodulin, as well as by phosphorylation (1). PKC phosphorylation enhances GRK2 activity by promoting its membrane localization and by abolishing the inhibitory association of calmodulin (2,3). PKA phosphorylates GRK2 at Ser685, which facilitates the association of GRK2 with a beta-adrenergic receptor (4). Erk inhibits GRK2 activity via phosphorylation at Ser670 (5). Src phosphorylates GRK2 at multiple tyrosine residues (Tyr13, 86 and 92), which activates GRK2 activity and promotes GRK2 degradation (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: CYLD is a cytoplasmic deubiquitinating enzyme encoded by a tumor suppressor gene altered in individuals diagnosed with cylindromatosis, a genetic condition characterized by benign tumors of skin appendages (1,2). Functional CYLD deubiquitinase regulates inflammation and cell proliferation by down regulating NF-κB signaling through removal of ubiquitin chains from several NF-κB pathway proteins (3,4). CYLD is a negative regulator of proximal events in Wnt/β-catenin signaling and is a critical regulator of natural killer T cell development (5,6). The transcription factor Snail can inhibit CYLD expression, resulting in melanoma cell proliferation (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Integrins are α/β heterodimeric cell surface receptors that play a pivotal role in cell adhesion and migration, as well as in growth and survival (1,2). The integrin family contains at least 18 α and 8 β subunits that form 24 known integrins with distinct tissue distribution and overlapping ligand specificities (3). Integrins not only transmit signals to cells in response to the extracellular environment (outside-in signaling), but also sense intracellular cues to alter their interaction with the extracellular environment (inside-out signaling) (1,2).A pair of important α4 integrins, α4β1 and α4β7, interact with VCAM-1, fibronectin, and MAdCAM-1 at cell adhesions (3). Gene knockout and antibody blocking research reveal that α4 integrins play important roles in embryonic liver and heart development and in fetal lymphocyte homing (4-6). Phosphorylation at Ser988 within the cytoplasmic tail of integrin α4 blocks binding to paxillin and promotes leading edge migration (7,8).On SDS-PAGE, integrin α4 can migrate at several different apparent molecular sizes, a 150 kDa mature protein and a 140 kDa precursor protein (a 180 kDa protein also exists under mild non-reducing conditions) (9). Integrin α4 has a cleavage site at Arg558, which results in a small portion of the protein as either an 80 kDa N-terminal or 70 kDa C-terminal fragment (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: DUSP3, also known as VHR (VH1 related) is a small dual-specific phosphatase with specificity for MAP kinase ERK1/2 and JNK, but not for p38 MAPK (1,2). Unlike most of the dual-specific phosphatases, which have inducible expression patterns, DUSP3 is constitutively expressed (2). In antigen stimulated T cells, DUSP3 is phosphorylated by ZAP-70 at Tyr138 (3). Tyr138 phosphorylation is required for DUSP3 to down-regulate the ERK and JNK pathways (3).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Antigen receptors found on the surface of B cells contain a heterodimeric signaling component composed of CD79A and CD79B, also known as Ig α and Ig β, respectively (1,2). Presence of this receptor complex is essential for B-cell development and function (3). Together these two proteins and the associated B cell receptor initiate intracellular signaling following antigen binding (4,5). An immunoreceptor tyrosine-based activation motif (ITAM) found in the CD79A intracellular region appears to be important for its function (6). Antigen binding precedes formation of the CD79A and CD79B heterodimer and subsequent activation of receptor associated kinases (7). Research has shown that CD79A is a marker for B-lineage lymphoblastic leukemia (8). Additionally, investigators have found that mutations in the CD79A (MB1) gene are associated with abnormally low levels of functional B cell receptors in some cases of chronic B cell lymphocytic leukemia (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Son of sevenless (SOS) was first identified in Drosophila as a guanine nucleotide exchange factor (GEF) for Ras acting downstream of the Sevenless receptor (1). Two closely related homologs of Drosophila SOS are found in mammalian cells: SOS1 and SOS2 (2). SOS1 consists of histone folds, Dbl (DH) and pleckstrin (PH) homology domains, a Ras exchange motif (REM), and Cdc25 homology and polyproline domains (3). SOS1 binds to GRB2, NCK, and other adaptor proteins, and plays an important role in ERK activation downstream of protein tyrosine kinase receptor (RTK). Research studies have identified mutations in the corresponding SOS1 gene of patients with Noonan syndrome, a developmental disorder characterized by short stature, facial dysmorphia, and congenital heart defects (4,5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Many growth factors and hormones induce the phosphoinositide 3-kinase signaling pathway, which results in the activation of downstream effector proteins such as the serine/threonine kinase Akt (1,2). One known Akt substrate is a 40 kDa, proline-rich protein (PRAS40) that binds to 14-3-3 proteins (2). PRAS40 also binds mTOR to transduce Akt signals to the mTOR complex. Inhibition of mTOR signaling stimulates PRAS40 binding to mTOR, which in turn inhibits mTOR activity (3). PRAS40 interacts with raptor in mTOR complex 1 (mTORC1) in insulin-deprived cells and inhibits the activation of the mTORC1 pathway mediated by the cell cycle protein Rheb. Phosphorylation of PRAS40 by Akt at Thr246 relieves PRAS40 inhibition of mTORC1 (4). mTORC1 in turn phosphorylates PRAS40 at Ser183 (5).