Microsize antibodies for $99 | Learn More >>

Polyclonal Antibody Immunoprecipitation Metabolic Process

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cytosolic phospholipase A2 (cPLA2) is a ubiquitously distributed enzyme that catalyzes the hydrolysis of the sn-2 acyl bond of glycerolipids to produce lysophospholipids and release arachidonic acid (1). cPLA2 has been implicated in diverse cellular responses such as mitogenesis, differentiation, inflammation and cytotoxicity (1). Calcium binding to the amino-terminal CalB domain of cPLA2 promotes the translocation of cPLA2 from cytosol to membrane, where cPLA2 cleaves arachidonic acid from natural membrane (2). Phosphorylation of cPLA2 by MAPK (p42/44 and p38) at Ser505 (3,4) and Ser727 (5) stimulates its catalytic activity.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Glutathione peroxidase 1 (GPX1) is a cytosolic selenoprotein which reduces hydrogen peroxide to water (1). GPX1 is the most abundant and ubiquitous among the five GPX isoforms identified so far (2). It is an important component in the anti-oxidative defense in cells and is associated with a variety of disease conditions, such as colon cancer (3), coronary artery disease (4) and insulin resistance (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Acetyl-CoA carboxylase (ACC) catalyzes the carboxylation of acetyl-CoA to malonyl-CoA (1). It is the key enzyme in the biosynthesis and oxidation of fatty acids (1). In rodents, the 265 kDa ACC1 (ACCα) form is primarily expressed in lipogenic tissues, while 280 kDa ACC2 (ACCβ) is the main isoform in oxidative tissues (1,2). However, in humans, ACC2 is the predominant isoform in both lipogenic and oxidative tissues (1,2). Phosphorylation by AMPK at Ser79 or by PKA at Ser1200 inhibits the enzymatic activity of ACC (3). ACC is a potential target of anti-obesity drugs (4,5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Enolase is an important glycolytic enzyme involved in the interconversion of 2-phosphoglycerate to phosphoenolpyruvate. Mammalian enolase exists as three subunits: enolase-1 (α-enolase), enolase-2 (γ-enolase) and enolase-3 (β-enolase) that can form both homo- and heterodimers. Expression of the enolase isoforms differs in a tissue specific manner (1). Enolase-1 plays a key role in anaerobic metabolism under hypoxic conditions and may act as a cell surface plasminogen receptor during tissue invasion (2,3). Abnormal expression of enolase-1 is associated with tumor progression in some cases of breast and lung cancer (4-7). Alternatively, an enolase-1 splice variant (MBP-1) binds the c-myc promoter p2 and may function as a tumor suppressor. For this reason enolase-1 is considered as a potential therapeutic target in the treatment of some forms of cancer (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: GFAT1, glutamine:fructose-6-phosphate aminotransferase 1, is the rate-limiting enzyme of the hexosamine biosynthesis pathway (1). This enzyme catalyzes the conversion of fructose-6-phosphate and glutamine to glucosamine-6-phosphate and glutamate (2). The hexosamine biosynthesis pathway generates the building blocks for protein and lipid glycosylation (2). Furthermore, studies suggest that increased activity of this pathway is a contributing factor to hyperglycemia-induced insulin resistance (1,2). GFAT1 is more active in non-insulin-dependent diabetes mellitus (NIDDM) patients (3). Transgenice mice overexpressing this enzyme in skeletal muscle and adipose tissue show an insulin resistance phenotype (4,5). GFAT2, an isoenzyme of GFAT1, was later identified (6, 7). Studies show that the regulation of GFAT2 is different from that of GFAT1, suggesting differential regulation of the hexosamine pathway in different tissues (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Acetyl-CoA carboxylase (ACC) catalyzes the carboxylation of acetyl-CoA to malonyl-CoA (1). It is the key enzyme in the biosynthesis and oxidation of fatty acids (1). In rodents, the 265 kDa ACC1 (ACCα) form is primarily expressed in lipogenic tissues, while 280 kDa ACC2 (ACCβ) is the main isoform in oxidative tissues (1,2). However, in humans, ACC2 is the predominant isoform in both lipogenic and oxidative tissues (1,2). Phosphorylation by AMPK at Ser79 or by PKA at Ser1200 inhibits the enzymatic activity of ACC (3). ACC is a potential target of anti-obesity drugs (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Succinyl-CoA synthetase α subunit (SUCLG1) catalyzes the conversion of succinate to succinyl-CoA and plays a key role in the citric acid cycle (1,2). Deficiency of this enzyme leads to a variety of diseases including fatal infantile lactic acidosis (3) and mitochondrial hepatoencephalomyopathy (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: OCRL1 is an inositol 5-phosphatase that selectively dephosphorylates the 5 position of the inositol ring. Its substrates include phosphatidylinositol 4,5-bisphosphate, inositol 1,4,5-trisphosphate, and inositol 1,3,4,5-tetrakisphosphate (1). Research studies indicate that mutations in OCRL1 are linked to Oculocerebrorenal syndrome or Lowe syndrome, an X-linked disorder distinguished by mental retardation and congenital cataracts, as well as Dent's disease (2,3). OCRL1 interacts with several endocytic proteins, including clathrin, AP-2, and RabGTPases (4-7). OCRL1 is localized to the Golgi complex, endosomes, and late stage clathrin-coated pits (6,8). OCRL1 controls early endosome function (8), regulating membrane traffic from endosomes to the Golgi. It is also involved in cytokinesis (9) and cilia assembly (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Stat5 is activated in response to a wide variety of ligands including IL-2, GM-CSF, growth hormone and prolactin. Phosphorylation at Tyr694 is obligatory for Stat5 activation (1,2). This phosphorylation is mediated by Src upon erythropoietin stimulation (3). Stat5 is constitutively active in some leukemic cell types (4). Phosphorylated Stat5 is found in some endothelial cells treated with IL-3, which suggests its involvement in angiogenesis and cell motility (5). Stat5a and Stat5b are independently regulated and activated in various cell types. For instance, interferon treatment predominantly activates Stat5a in U-937 cells and Stat5b in HeLa cells (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The chondroitin sulfate proteoglycan NG2 is a type I membrane protein expressed by subpopulations of glia including oligodendroglial precursor cells and a variety of tumor cells. Normal precursor cells and malignant tumor cells migrate and proliferate, but there is evidence that cells may not be able to engage in both activities at the same time. However, NG2 is involved in promoting both proliferation and motility (1). The extracellular domain of NG2 sequesters growth factors and binds to both growth factor receptors and extracellular matrix ligands such as fibronectin, collagens and laminin. The cytoplasmic domain is involved in activating Rac, Cdc42 and p130 Cas (2). PKCα phosphorylates NG2 at Thr2256, triggering the redistribution of NG2 from apical microprocesses to lamellipodia accompanied by enhanced cell motility (3). ERK phosphorylates NG2 at Thr2314, stimulating cell proliferation (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Ectonucleotide pyrophosphatase-phosphodiesterase 1 (ENPP1) is a single-pass, type II transmembrane protein primarily involved in ATP hydrolysis at the plasma membrane. Targeting of ENPP1 to the basolateral cell surface relies on the presence of a carboxy-terminal di-leucine-based signal (1). ENPP1 plays important roles in bone mineralization and soft tissue calcification (2-5). Mutations in the corresponding ENPP1 gene cause generalized arterial calcification in infancy (GACI) and idiopathic infantile arterial calcification (IIAC) (6,7). ENPP1 inhibits insulin receptor function and overexpression of this enzyme causes insulin resistance and glucose intolerance in mice (8,9). Genetic variants of ENPP1 have been associated with obesity and type 2 diabetes (10-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Nucleoporin 98 kDa (NUP98) is a component of the nuclear pore complex. It is expressed as three different precursors that undergo auto-cleavage to generate a common amino-terminal 98 kDa peptide (NUP98) and carboxy-terminal 6, 96 (NUP96) and 88 (p88) kDa peptides (1,2). NUP98 contains FG and GLFG repeat domains at its amino terminus and a RNA-binding domain in its carboxy terminus (3). The NUP98 gene is localized on chromosome 11p15.5, a region frequently rearranged in leukemias. To date, 15 fusion partners have been identified for NUP98 (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: α-Synuclein is a protein of 140-amino acids expressed abundantly in the brain. α-Synuclein is also the main component of pathogenic Lewy bodies and Lewy neurites. Research studies have shown that mutations of the α-synuclein gene are linked to Parkinson's disease (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: SH2-containing inositol phosphatase 1 (SHIP1) is a hematopoietic phosphatase that hydrolyzes phosphatidylinositol-3,4,5-triphosphate to phosphatidylinositol-3,4-bisphosphate (1). SHIP1 is a cytosolic phosphatase with an SH2 domain in its amino terminus and two NPXY Shc binding motifs in its carboxy terminus (1,2). Upon receptor cross-linking, SHIP is first recruited to the membrane junction through binding of its SH2 domain to the phospho-tyrosine in the ITIM motif (2), followed by tyrosine phosphorylation on the NPXY motif (2). The membrane relocalization and phosphorylation on the NPXY motif is essential for the regulatory function of SHIP1 (3-5). Its effect on calcium flux, cell survival, growth, cell cycle arrest, and apoptosis is mediated through the PI3K and Akt pathways (3-5). Tyr1021 is located in one of the NPXY motifs in SHIP1, and its phosphorylation is important for SHIP1 function (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: AMP-activated protein kinase (AMPK) is highly conserved from yeast to plants and animals and plays a key role in the regulation of energy homeostasis (1). AMPK is a heterotrimeric complex composed of a catalytic α subunit and regulatory β and γ subunits, each of which is encoded by two or three distinct genes (α1, 2; β1, 2; γ1, 2, 3) (2). The kinase is activated by an elevated AMP/ATP ratio due to cellular and environmental stress, such as heat shock, hypoxia, and ischemia (1). The tumor suppressor LKB1, in association with accessory proteins STRAD and MO25, phosphorylates AMPKα at Thr172 in the activation loop, and this phosphorylation is required for AMPK activation (3-5). AMPKα is also phosphorylated at Thr258 and Ser485 (for α1; Ser491 for α2). The upstream kinase and the biological significance of these phosphorylation events have yet to be elucidated (6). The β1 subunit is post-translationally modified by myristoylation and multi-site phosphorylation including Ser24/25, Ser96, Ser101, Ser108, and Ser182 (6,7). Phosphorylation at Ser108 of the β1 subunit seems to be required for the activation of AMPK enzyme, while phosphorylation at Ser24/25 and Ser182 affects AMPK localization (7). Several mutations in AMPKγ subunits have been identified, most of which are located in the putative AMP/ATP binding sites (CBS or Bateman domains). Mutations at these sites lead to reduction of AMPK activity and cause glycogen accumulation in heart or skeletal muscle (1,2). Accumulating evidence indicates that AMPK not only regulates the metabolism of fatty acids and glycogen, but also modulates protein synthesis and cell growth through EF2 and TSC2/mTOR pathways, as well as blood flow via eNOS/nNOS (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cytosolic phospholipase A2 (cPLA2) is a ubiquitously distributed enzyme that catalyzes the hydrolysis of the sn-2 acyl bond of glycerolipids to produce lysophospholipids and release arachidonic acid (1). cPLA2 has been implicated in diverse cellular responses such as mitogenesis, differentiation, inflammation and cytotoxicity (1). Calcium binding to the amino-terminal CalB domain of cPLA2 promotes the translocation of cPLA2 from cytosol to membrane, where cPLA2 cleaves arachidonic acid from natural membrane (2). Phosphorylation of cPLA2 by MAPK (p42/44 and p38) at Ser505 (3,4) and Ser727 (5) stimulates its catalytic activity.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Insulin Receptor Substrate 2 (IRS-2) is one of the major substrates of the insulin receptor kinase (1). In vertebrates, IRS-2 functions as a scaffolding protein to coordinate separate branches of the Insulin/IGF-signaling cascades (2). IRS-2 is essential for normal nutrient homeostasis because it mediates both peripheral insulin action and the effect of IGF-1 on B-cell growth. Mice lacking IRS-2 fail to maintain sufficient compensatory insulin secretion and develop diabetes as young adults (3).

$303
100 µl
APPLICATIONS
REACTIVITY
Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of the neurotransmitter dopamine and other catecholamines. TH functions as a tetramer, with each subunit composed of a regulatory and catalytic domain, and exists in several different isoforms (1,2). This enzyme is required for embryonic development since TH knockout mice die before or at birth (3). Levels of transcription, translation and posttranslational modification regulate TH activity. The amino-terminal regulatory domain contains three serine residues: Ser9, Ser31 and Ser40. Phosphorylation at Ser40 by PKA positively regulates the catalytic activity of TH (4-6). Phosphorylation at Ser31 by CDK5 also increases the catalytic activity of TH through stabilization of TH protein levels (7-9).

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Acetyl-CoA carboxylase (ACC) catalyzes the carboxylation of acetyl-CoA to malonyl-CoA (1). It is the key enzyme in the biosynthesis and oxidation of fatty acids (1). In rodents, the 265 kDa ACC1 (ACCα) form is primarily expressed in lipogenic tissues, while 280 kDa ACC2 (ACCβ) is the main isoform in oxidative tissues (1,2). However, in humans, ACC2 is the predominant isoform in both lipogenic and oxidative tissues (1,2). Phosphorylation by AMPK at Ser79 or by PKA at Ser1200 inhibits the enzymatic activity of ACC (3). ACC is a potential target of anti-obesity drugs (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: TNF-α, the prototypical member of the TNF protein superfamily, is a homotrimeric type-II membrane protein (1,2). Membrane-bound TNF-α is cleaved by the metalloprotease TACE/ADAM17 to generate a soluble homotrimer (2). Both membrane and soluble forms of TNF-α are biologically active. TNF-α is produced by a variety of immune cells including T cells, B cells, NK cells, and macrophages (1). Cellular response to TNF-α is mediated through interaction with receptors TNF-R1 and TNF-R2 and results in activation of pathways that favor both cell survival and apoptosis depending on the cell type and biological context. Activation of kinase pathways (including JNK, Erk1/2, p38 MAPK, and NF-κB) promotes the survival of cells, while TNF-α-mediated activation of caspase-8 leads to programmed cell death (1,2). TNF-α plays a key regulatory role in inflammation and host defense against bacterial infection, notably Mycobacterium tuberculosis (3).