Microsize antibodies for $99 | Learn More >>

Polyclonal Antibody Immunoprecipitation Rna Splicing

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein Q and R belong to a family of hnRNP proteins that are involved in RNA binding, RNA biosynthesis, and mRNA transport from the nucleus to the cytoplasm (1-3). These two proteins are encoded by different genes but have 83% homology. hnRNP Q has three alternative splice variants (hnRNP Q1-3) (1-3). Methylation of carboxy-terminal arginine residues is required for nuclear localization (4). hnRNP Q binds to AU-rich mRNA in conjunction with AUF1 and regulates mRNA decay (5). hnRNP Q isoforms play a crucial role in mediating nuclear function of survival of motor neuron (SMN) complex (6,7) and modulating RNA biosynthesis and hepatitis C virus replication (8). hnRNP R was identified recently and its function is still under investigation (9), however hnRNP R does not duplicate the biological function of hnRNP Q. Both hnRNP Q and R are present in cytoplasmic mRNP granules containing untranslated mRNAs (10) and both interact with SMN (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism, and transport of nuclear pre-mRNA transcripts (1). hnRNP A1 regulates the alternative splicing of c-Src and c-H-Ras (2,3) and modifies initiation of translation of the fibroblast growth factor 2 mRNA (4). hnRNP A1 expression level is elevated in many cancers; knockdown of hnRNP A1 leads to apoptosis in various cancer cells (5). Although predominantly nuclear, hnRNP A1 is continually transported from the nucleus to the cytoplasm where it disassociates from mRNA and is rapidly re-imported into the nucleus (6,7). hnRNP A1 binds to cis-acting repressive sequences (CRS) of HIV-1 to influence HIV-1 production (8,9). HIV-1 enhances hnRNP A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism, and transport of nuclear pre-mRNA transcripts (1). hnRNP A1 regulates the alternative splicing of c-Src and c-H-Ras (2,3) and modifies initiation of translation of the fibroblast growth factor 2 mRNA (4). hnRNP A1 expression level is elevated in many cancers; knockdown of hnRNP A1 leads to apoptosis in various cancer cells (5). Although predominantly nuclear, hnRNP A1 is continually transported from the nucleus to the cytoplasm where it disassociates from mRNA and is rapidly re-imported into the nucleus (6,7). hnRNP A1 binds to cis-acting repressive sequences (CRS) of HIV-1 to influence HIV-1 production (8,9). HIV-1 enhances hnRNP A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Cyclin-dependent kinase 12 (CDK12/CRKRS/CRK7) is composed of a central CTD kinase domain, several proline-rich regions, and several amino-terminal arginine/serine (RS) motifs common to splicing factors (1). CDK12 is ubiquitously expressed and forms a complex with cyclin K that regulates phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (1-4). CDK12 is important for expression of a subset of long genes with high numbers of exons including some regulators of the DNA damage response, such as breast and ovarian cancer type 1 susceptibility protein 1 (BRCA1) and ataxia telangiectasia and Rad3-related (ATR) (3). Depletion of CDK12 results in spontaneous DNA damage and increased sensitivity to DNA damage agents (3). Research studies have shown that CDK12 is recurrently mutated in high-grade ovarian cancer (5,6). In addition, high levels of CDK12 are required to maintain pluripotency of embryonic stem cells (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Methyltransferase-like protein 3 (METTL3) and methytransferase-like protein 14 (METTL14) are the two catalytic subunits of an N6-methyltransferase complex that methylates adenosine residues in RNA (1). Methylation of adenosine residues regulates mRNA splicing, processing, translation efficiency, editing and stability, in addition to regulating primary miRNA processing, and is critical for proper regulation of the circadian clock, embryonic stem cell self-renewal, immune tolerance, response to various stimuli, meiosis and mouse fertility (2,3). In this complex, METTL3 functions as the catalytic methyltransferase subunit and METTL14 functions as the target recognition subunit by binding to RNA (4). In addition, the Wilms tumor 1-associated protein (WTAP) functions as a regulatory subunit and is required for accumulation of the complex to nuclear speckles, which are sites of RNA processing (5). Several studies suggest a role for this complex in cancer. METTL3 expression is elevated in lung adenocarcinoma where it promotes growth, survival and invasion of human lung cancer cells (6). In addition, WTAP is over-expressed in a number of different cancers and positively regulates cell migration and invasion in glioblastoma and cholangiocarcinoma (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: hnRNP E1 is a member of the hnRNP family of proteins that are involved in pre-mRNA processing and mRNA export, localization, stability, and translation (1-6). hnRNP E1 exerts a wide range of biological functions, such as transcriptional activation of mouse MOR gene expression (7), attenuation of alternative splicing of GHR pseudoexon expression (8), stabilization of collagen I and II (9), beta-globin (10), and androgen receptor (11) mRNAs, and regulation of translation of various genes including Dab2, ILEI, and Bag-1 (12,13). hnRNP E1 is ubiquitously expressed. Phosphorylation of hnRNP E1 affects its RNA binding affinity (13,14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism, and transport of nuclear pre-mRNA transcripts (1). The A/B subfamily of hnRNP includes A1, A2/B1, A3, and A0. hnRNP A0 is phosphorylated at Ser84 by MAPKAPK-2 in response to LPS treatment in mouse macrophage cells, which might play a key role in stimulating translation of the TNF-α message (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: RBM10 is an RNA binding protein and a paralog to tumor suppressor RBM5 (1,2). Alternative splicing creates two highly expressed variants that differ by one exon. RBM10 controls alternative splicing and exon skipping of mRNAs, including Fas and Bcl-x (3,4). RBM10 has been shown to affect apoptosis via up regulation of TNF-α mRNA (5). In lung cancer, RBM10 mutations disrupt the splicing of NUMB, a regulator of Notch signaling (6,7). Fusion of the RBM10 gene with TFE3 has been found in renal cell carcinoma (8-9). Mutations of RBM10 causes TARP syndrome, an x-linked, lethal disorder characterized by various developmental defects (10-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: TFIIF is a member of the group of general transcription factors that facilitate the binding of RNA polymerase II (Pol II) to promoter sequences as part of the pre-initiation complex (PIC) (1). TFIIF consists of subunits TFIIF-α (RAP74) and TFIIF-β (RAP30). It is involved in the stabilization of Pol II association with the PIC and selection of the transcription start site during transcription initiation (1,2). In addition to its role in transcription initiation, TFIIF has been shown to stimulate the transcription elongation activity of Pol II as well as dephosphorylation and recycling of Pol II during transcription termination (3-5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein L-like (hnRNP LL) is a nuclear RNA-binding protein that shares 69% amino acid homology with hnRNP L, a component of the hnRNP complex that regulates mRNA formation, packaging, and processing (1). hnRNP LL is induced in activated T cells and functions as a critical regulator of alternative splicing of CD45, a tyrosine phosphatase crucial for T cell development and activation (2). hnRNP LL also regulates the splicing of CD44 and Stat5a (2). The four isoforms of hnRNP LL are generated by alternative splicing and are widely expressed in human tissues (3).

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Protein phosphatase type 2A (PP2A) is an essential protein serine/threonine phosphatase that is conserved in all eukaryotes. PP2A is a key enzyme within various signal transduction pathways as it regulates fundamental cellular activities such as DNA replication, transcription, translation, metabolism, cell cycle progression, cell division, apoptosis and development (1-3). The core enzyme consists of catalytic C and regulatory A (or PR65) subunits, with each subunit represented by α and β isoforms (1). Additional regulatory subunits belong to four different families of unrelated proteins. Both the B (or PR55) and B' regulatory protein families contain α, β, γ and δ isoforms, with the B' family also including an ε protein. B'' family proteins include PR72, PR130, PR59 and PR48 isoforms, while striatin (PR110) and SG2NA (PR93) are both members of the B''' regulatory protein family. These B subunits competitively bind to a shared binding site on the core A subunit (1). This variable array of holoenzyme components, particularly regulatory B subunits, allows PP2A to act in a diverse set of functions. PP2A function is regulated by expression, localization, holoenzyme composition and post-translational modification. Phosphorylation of PP2A at Tyr307 by Src occurs in response to EGF or insulin and results in a substantial reduction of PP2A activity (4). Reversible methylation on the carboxyl group of Leu309 of PP2A has been observed (5,6). Methylation alters the conformation of PP2A, as well as its localization and association with B regulatory subunits (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: TDP43 (TAR DNA-binding protein 43) is involved in transcriptional regulation and exon splicing (1,2). While normal TDP43 is a nuclear protein, pathological TDP43 is a component of insoluble aggregates in patients with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). In these disorders, TDP43 is abnormally ubiquitinated, phosphorylated and cleaved to generate carboxy-terminal fragments that are sequestered as insoluble aggregates in neuronal nuclei, perikarya, and neurites (3,4). Additionally, TDP43 inhibits the expression of the HIV-1 gene and regulates CFTR gene splicing (1,5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Chicken, D. melanogaster, Dog, Guinea Pig, Hamster, Human, Monkey, Mouse, Pig, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The mTORC1 kinase complex is a critical regulator of cell growth (1,2). Its activity is modulated by energy levels, growth factors, and amino acids via signaling through Akt, MAPK, and AMPK pathways (3,4). Recent studies found that the four related GTPases, RagA, RagB, RagC, and RagD, interact with raptor within the mTORC1 complex (1,2). These interactions are both necessary and sufficient for mTORC1 activation in response to amino acid signals (1,2).

$122
20 µl
$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphoinositide 3-kinase (PI3K) catalyzes the production of phosphatidylinositol-3,4,5-triphosphate by phosphorylating phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Growth factors and hormones trigger this phosphorylation event, which in turn coordinates cell growth, cell cycle entry, cell migration, and cell survival (1). PTEN reverses this process, and research studies have shown that the PI3K signaling pathway is constitutively activated in human cancers that have loss of function of PTEN (2). PI3Ks are composed of a catalytic subunit (p110) and a regulatory subunit. Various isoforms of the catalytic subunit (p110α, p110β, p110γ, and p110δ) have been isolated, and the regulatory subunits that associate with p110α, p110β, and p110δ are p85α and p85β (3). In contrast, p110γ associates with a p101 regulatory subunit that is unrelated to p85. Furthermore, p110γ is activated by βγ subunits of heterotrimeric G proteins (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphoinositide 3-kinase (PI3K) catalyzes the production of phosphatidylinositol-3,4,5-triphosphate by phosphorylating phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Growth factors and hormones trigger this phosphorylation event, which in turn coordinates cell growth, cell cycle entry, cell migration, and cell survival (1). PTEN reverses this process, and research studies have shown that the PI3K signaling pathway is constitutively activated in human cancers that have loss of function of PTEN (2). PI3Ks are composed of a catalytic subunit (p110) and a regulatory subunit. Various isoforms of the catalytic subunit (p110α, p110β, p110γ, and p110δ) have been isolated, and the regulatory subunits that associate with p110α, p110β, and p110δ are p85α and p85β (3). In contrast, p110γ associates with a p101 regulatory subunit that is unrelated to p85. Furthermore, p110γ is activated by βγ subunits of heterotrimeric G proteins (4).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Deleted in breast cancer gene 1 protein (DBC1) was originally identified by its localization to a region of chromosome 8p21 that is homozygously deleted in breast cancer (1). DBC1 is a large, nuclear protein with multiple functions in cell survival. It binds directly to the estrogen receptor α (ERα) hormone-binding domain in a ligand-independent manner and may be a key determinant of ligand-independent ERα expression and survival in human breast cancer cells (2). DBC1 can promote p53-mediated apoptosis by binding to and inhibiting the deacetylase activity of SirT1, resulting in increased p53 acetylation levels and activity (3). DBC1 may be an important regulator of heterochromatin formation as it binds SUV39H1 and inhibits its histone methyltransferase activity (4). Caspase-dependent processing activates the pro-apoptotic activity of DBC1 during Tumor Necrosis Factor-α (TNF-α)-mediated cell death signaling (5). This processing of DBC1 in response to TNF-α is an early event in the onset of apoptosis and results in relocalization of DBC1 to the cytoplasm. Overexpression of the processed, cytoplasmic form of DBC1 results in mitochondrial clustering and matrix condensation and sensitizes cells to TNF-α-mediated apoptosis.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Various steps in gene expression, such as mRNA processing, surveillance, export, and synthesis are coupled to transcription elongation (1,2). The C-terminal domain (CTD) of the large subunit of RNA polymerase II plays an important role in the integration of these different steps (1,2). IWS1 interacts with Spt6, a CTD-binding transcription elongation factor and H3 chaperone (1,2). IWS1 also recruits another CTD-binding protein, HYPB/Setd2 histone methyltransferase, to the RNA polymerase II complex for elongation-coupled H3K36 trimethylation (2). Thus, IWS1 links Spt6 and HYPB/Setd2 in a large complex and regulates mRNA synthesis and histone methylation at the co-transcriptional level (2).