Microsize antibodies for $99 | Learn More >>

Polyclonal Antibody Immunoprecipitation Wnt-Protein Binding

Also showing Polyclonal Antibody Immunoprecipitation Wnt Receptor Activity

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Frizzled (Fzd) belongs to the seven transmembrane-spanning G-protein-coupled receptor (GPCR) superfamily (1). Fzds have a large extracellular N-terminal region containing a cysteine-rich domain (CRD), which is involved in binding to Wnt proteins (1,2). The intracellular C-terminus binds to the PDZ domain of Dvl proteins, a major signaling component downstream of Fzd (3). Wnt proteins bind to Fzd and the co-receptors LRP5 or LPR6, and activate Wnt/β-catenin pathway through inhibiting phosphorylation of β-catenin by GSK3-β (4,5). In addition to this canonical Wnt/β-catenin pathway, some Wnt proteins can also activate the Fzd/Ca2+ pathway and Fzd/PCP (planar cell polarity) pathway (6,7). The mammalian Fzd subfamily has 10 members (Fzd1 to Fzd10) and they may mediate signaling through different pathways (8). Some Fzds can also bind to other secreted proteins, like Norrin and R-Spondin (9-11).

$122
20 µl
$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: LRP5 and LRP6 are single-pass transmembrane proteins belonging to the low-density lipoprotein receptor (LDLR)-related protein family. Unlike other members of the LDLR family, LRP5 and LRP6 have four EGF and three LDLR repeats in the extracellular domain, and proline-rich motifs in the cytoplasmic domain (1). They function as co-receptors for Wnt and are required for the canonical Wnt/β-catenin signaling pathway (2,3). LRP5 and LRP6 are highly homologous and have redundant roles during development (4,5). The activity of LRP5 and LRP6 can be inhibited by the binding of some members of the Dickkopf (DKK) family of proteins (6,7). Upon stimulation with Wnt, LRP6 is phosphorylated at multiple sites including Thr1479, Ser1490, and Thr1493 by kinases such as GSK-3 and CK1 (8-10). Phosphorylated LRP6 recruits axin to the membrane and presumably activates β-catenin signaling (8-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Cripto, also known as teratocarcinoma derived growth factor 1 (TDGF-1), belongs to the EGF-CFC family of proteins. Members of this family are characterized by an N-terminal signal peptide, a conserved cysteine rich domain (CFC motif), and a short hydrophobic carboxy-terminal tail that contains GPI cleavage and attachment sites. The GPI moiety anchors Cripto and family members to the extracellular plasma membrane (1). An O-linked fucosylation site within the EGF-like motif is required for Cripto and related family members to perform their function as co-receptors for TGF-β-related ligands such as Nodal and Vg1/GDF1 (2,3). Soluble forms of Cripto can be produced - these contain intact EGF and CFC domains, and are thought to have paracrine activities, as opposed to the autocrine activity of Cripto functioning as a coreceptor (4). Understanding of this paracrine activity is not complete, but it is proposed that Cripto may act as co-ligand for Nodal (3).Cripto is an important modulator of embryogenesis and oncogenesis (4). It is highly expressed in early embryos, and in embryonic stem (ES) cells where it is involved in cardiomyocytic differentiation and acts as a negative regulator of neurogenesis (5-7). Transient activation of Cripto is essential for the capacity of stem cell self-renewal and pluripotency in ES cells, and in some adult derived stem cells (8). Signaling through Cripto can also stimulate other activities that promote tumorigenesis such as stimulation of proliferation, cell motility, invasion, angiogenesis and epithelial-mesenchymal transition (EMT) (9-11). Cripto is highly expressed in a broad range of tumors, where it acts as a potent oncogene.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Secreted Frizzled-related proteins (SFRPs) display homology and structural similarity to the extracellular cysteine-rich Wnt-binding domain of the G protein-coupled receptor Frizzled (1,2). To date, five distinct SFRPs (SFRP1 to 5) have been found in mammalian cells. These secreted proteins typically act as antagonists to Wnt signaling by directly binding and inhibiting Wnt proteins, or by binding Frizzled to block Wnt protein interaction with the receptor (3). The various SFRPs bind and regulate Wnt proteins differentially; these proteins also display distinct expression patterns as they play important roles in regulating development (4-7). SFRP proteins appear to act as tumor suppressors, with loss of expression or function correlating with many invasive forms of cancer. Deletion of the corresponding SFRP1 gene and promoter hypermethylation leading to gene silencing has been reported in a number of cancers. Abnormal expression of SRFP1 and other Wnt signaling proteins is associated with some cases of retinitis pigmentosa (reviewed in 8).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: ROR1 and ROR2 are orphan receptor tyrosine kinases that are most closely related to MuSK and the Trk family of neurotrophin receptors. They are characterized by the presence of extracellular frizzled-like cysteine-rich domains and membrane-proximal kringle domains, both of which are assumed to mediate protein-protein interactions (1-3). The ROR family RTKs are evolutionarily conserved among Caenorhabditis elegans, Drosophila, mice, and humans (1,4). Although the functions of ROR kinases are unknown, similarities between ROR and MuSK and Trk kinases have led to speculation that ROR kinases regulate synaptic development. CAM-1, a C. elegans ortholog of the ROR family RTKs, plays several important roles in regulating cellular migration, polarity of asymmetric cell divisions, and axonal outgrowth of neurons during nematode development (4). mROR1 and mROR2 may play differential roles during the development of the nervous system (5).