Microsize antibodies for $99 | Learn More >>

Polyclonal Antibody Mirna Binding

Also showing Polyclonal Antibody Western Blotting Mirna Binding

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Small non-coding RNAs are important regulators of gene expression in higher eukaryotes (1,2). Several classes of small RNAs, including short interfering RNAs (siRNAs) (3), microRNAs (miRNAs) (4), and Piwi-interacting RNAs (piRNAs) (5), have been identified. MicroRNAs are about 21 nucleotides in length and have been implicated in many cellular processes such as development, differentiation, and stress response (1,2). MicroRNAs regulate gene expression by modulating mRNA translation or stability (2). MicroRNAs function together with the protein components in the complexes called micro-ribonucleoproteins (miRNPs) (2). Among the most important components in these complexes are Argonaute proteins (1,2). There are four members in the mammalian Argonaute family and only Argonaute 2 (Ago2) possesses the Slicer endonuclease activity (1,2). Argonaute proteins participate in the various steps of microRNA-mediated gene silencing, such as repression of translation and mRNA turnover (1).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Dicer is a member of the RNase III family that specifically cleaves double-stranded RNAs to generate microRNAs (miRNAs) (1). After long primary transcript pri-miRNAs are processed to stem-looped pre-miRNAs by Drosha (2), pre-miRNAs are transported to the cytoplasm and further processed by Dicer to produce 22-nucleotide mature miRNAs (3). The mature miRNA then becomes a part of the RNA-Induced Silencing Complex (RISC) and can bind to the 3' UTR of the target mRNA (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: Embryonic stem cells (ESC) derived from the inner cell mass of the blastocyst are unique in their pluripotent capacity and potential for self-renewal (1). Research studies demonstrate that a set of transcription factors that includes Oct-4, Sox2, and Nanog forms a transcriptional network that maintains cells in a pluripotent state (2,3). Chromatin immunoprecipitation experiments show that Sox2 and Oct-4 bind to thousands of gene regulatory sites, many of which regulate cell pluripotency and early embryonic development (4,5). siRNA knockdown of either Sox2 or Oct-4 results in loss of pluripotency (6). Induced overexpression of Oct-4 and Sox2, along with additional transcription factors Klf4 and c-Myc, can reprogram both mouse and human somatic cells to a pluripotent state (7,8). Additional evidence demonstrates that Sox2 is also present in adult multipotent progenitors that give rise to some adult epithelial tissues, including several glands, the glandular stomach, testes, and cervix. Sox2 is thought to regulate target gene expression important for survival and regeneration of these tissues (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: LIN28A and LIN28B are conserved, developmentally regulated RNA binding proteins that inhibit the processing and maturation of the let-7 family of miRNAs (1,2). The let-7 miRNAs have been implicated in repression of oncogenes such as Ras, Myc, and HMGA2 (3). It has recently been shown that upregulation of LIN28A and LIN28B in primary human tumors and human cancer cell lines is correlated with downregulation of let-7 miRNAs (4). LIN28 genes are reported to be involved in primordial germ cell development and germ cell malignancy (5). In addition, allelic variation in LIN28B is associated with regulating the timing of puberty in humans (6). Overexpression of LIN28A, in conjunction with Oct-4, Sox2, and Nanog, can reprogram human fibroblasts to pluripotent, ES-like cells (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Oct-4 (POU5F1) is a transcription factor highly expressed in undifferentiated embryonic stem cells and embryonic germ cells (1). A network of key factors that includes Oct-4, Nanog, and Sox2 is necessary for the maintenance of pluripotent potential, and downregulation of Oct-4 has been shown to trigger cell differentiation (2,3). Research studies have demonstrated that Oct-4 is a useful germ cell tumor marker (4). Oct-4 exists as two splice variants, Oct-4A and Oct-4B (5). Recent studies have suggested that the Oct-4A isoform has the ability to confer and sustain pluripotency, while Oct-4B may exist in some somatic, non-pluripotent cells (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: LIN28A and LIN28B are conserved, developmentally regulated RNA binding proteins that inhibit the processing and maturation of the let-7 family of miRNAs (1,2). The let-7 miRNAs have been implicated in repression of oncogenes such as Ras, Myc, and HMGA2 (3). It has recently been shown that upregulation of LIN28A and LIN28B in primary human tumors and human cancer cell lines is correlated with downregulation of let-7 miRNAs (4). LIN28 genes are reported to be involved in primordial germ cell development and germ cell malignancy (5). In addition, allelic variation in LIN28B is associated with regulating the timing of puberty in humans (6). Overexpression of LIN28A, in conjunction with Oct-4, Sox2, and Nanog, can reprogram human fibroblasts to pluripotent, ES-like cells (7).