Microsize antibodies for $99 | Learn More >>

Polyclonal Antibody Response to Muramyl Dipeptide

Also showing Polyclonal Antibody Western Blotting Response to Muramyl Dipeptide

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: NALP1 (DEFCAP/NAC/CARD7) is an NLR (Nod-like receptor) family member that has been implicated in the regulation of apoptosis and inflammatory responses (1-5). Structurally, NALP contains an amino-terminal PYRIN domain, followed by a nucleotide-binding site (NBS), a leucine rich repeat region (LRR), and a carboxy-terminal CARD domain. NALP1 and interacts strongly with caspase-2 and weakly with caspase-9, and induces apoptosis when overexpressed (3). Similar to a related Ced-4 family member Apaf-1, it was also shown to be involved in cytochrome c-dependent caspase activation (2). It has also been shown to be part of the "inflammasome" comprised of caspase-1, caspase-5, and Pycard/ASC, which is critical in the processing of pro-inflammatory cytokines like IL-1β (6). Two major isoforms were identified for NALP1, which differ in a 44 amino acid region within the LRR (3). In addition, like NALP3, a short NALP1 isoform lacking the LRR (NALP1s) likely exists (7). Polymorphisms in NALP1 have been associated with autoimmune disease (8) and susceptibility to toxins (9).

$260
100 µl
$630
300 µl
APPLICATIONS
REACTIVITY
Bovine, Dog, Human, Monkey, Mouse, Pig, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The NF-κB/Rel transcription factors are present in the cytosol in an inactive state complexed with the inhibitory IκB proteins (1-3). Activation occurs via phosphorylation of IκBα at Ser32 and Ser36 followed by proteasome-mediated degradation that results in the release and nuclear translocation of active NF-κB (3-7). IκBα phosphorylation and resulting Rel-dependent transcription are activated by a highly diverse group of extracellular signals including inflammatory cytokines, growth factors, and chemokines. Kinases that phosphorylate IκB at these activating sites have been identified (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Interferon regulatory factors (IRFs) comprise a family of transcription factors that function within the Jak/Stat pathway to regulate interferon (IFN) and IFN-inducible gene expression in response to viral infection (1). IRFs play an important role in pathogen defense, autoimmunity, lymphocyte development, cell growth, and susceptibility to transformation. The IRF family includes nine members: IRF-1, IRF-2, IRF-9/ISGF3γ, IRF-3, IRF-4 (Pip/LSIRF/ICSAT), IRF-5, IRF-6, IRF-7, and IRF-8/ICSBP. All IRF proteins share homology in their amino-terminal DNA-binding domains. IRF family members regulate transcription through interactions with proteins that share similar DNA-binding motifs, such as IFN-stimulated response elements (ISRE), IFN consensus sequences (ICS), and IFN regulatory elements (IRF-E) (2).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: p38 MAP kinase (MAPK), also called RK (1) or CSBP (2), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (1-4). Four isoforms of p38 MAPK, p38α, β, γ (also known as Erk6 or SAPK3), and δ (also known as SAPK4) have been identified. Similar to the SAPK/JNK pathway, p38 MAPK is activated by a variety of cellular stresses including osmotic shock, inflammatory cytokines, lipopolysaccharide (LPS), UV light, and growth factors (1-5). MKK3, MKK6, and SEK activate p38 MAPK by phosphorylation at Thr180 and Tyr182. Activated p38 MAPK has been shown to phosphorylate and activate MAPKAP kinase 2 (3) and to phosphorylate the transcription factors ATF-2 (5), Max (6), and MEF2 (5-8). SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-imidazole) is a selective inhibitor of p38 MAPK. This compound inhibits the activation of MAPKAPK-2 by p38 MAPK and subsequent phosphorylation of HSP27 (9). SB203580 inhibits p38 MAPK catalytic activity by binding to the ATP-binding pocket, but does not inhibit phosphorylation of p38 MAPK by upstream kinases (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: CARD9 is a caspase recruitment domain (CARD)-containing adaptor protein expressed by myeloid cells (1,2). It is required for antifungal immunity downstream of pathogen detection by C-type lectin receptors (CLRs) such as Dectin-1 (3,4). Recognition of carbohydrates on fungal cell walls by CLRs leads to activation of the tyrosine kinase Syk, followed by activation of PKCδ (5,6). PKCδ phosphorylates CARD9, enabling the assembly of a complex containing CARD9 and Bcl10 (6). This complex activates NF-κB, resulting in upregulation of inflammatory cytokines important for initiation of adaptive immunity (3,4,6,7). CARD9 was also shown to be important for the induction of IL-1β, downstream of the viral nucleic acid sensor RIG-I, as well as for the generation of reactive oxygen species important for bacterial killing by macrophages (2,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CARD9 is a caspase recruitment domain (CARD)-containing adaptor protein expressed by myeloid cells (1,2). It is required for antifungal immunity downstream of pathogen detection by C-type lectin receptors (CLRs) such as Dectin-1 (3,4). Recognition of carbohydrates on fungal cell walls by CLRs leads to activation of the tyrosine kinase Syk, followed by activation of PKCδ (5,6). PKCδ phosphorylates CARD9, enabling the assembly of a complex containing CARD9 and Bcl10 (6). This complex activates NF-κB, resulting in upregulation of inflammatory cytokines important for initiation of adaptive immunity (3,4,6,7). CARD9 was also shown to be important for the induction of IL-1β, downstream of the viral nucleic acid sensor RIG-I, as well as for the generation of reactive oxygen species important for bacterial killing by macrophages (2,8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: A20, also referred to as TNF-α-induced protein 3 (TNFAIP3), is cytokine-inducible protein that functions to inhibit apoptosis and activate NF-κB (1,2). It was first identified as a TNF-α inducible primary response gene in human umbilical vein endothelial cells, and encodes a 790-amino acid protein containing seven Cys2/Cys2-zinc finger motifs (3). Constitutive expression of A20 is observed in lymphoid tissues (4), but it is transiently expressed in a variety of cell types in response to inflammatory signals such as TNF-α (3,5), IL-1 (3,5), phorbol esters (6), and LPS (7). Expression of A20 can confer resistance to apoptosis and NF-κB activation triggered by these signals, probably through interference with TRAF (TNF receptor associated factor) family members (8,9), and interaction with the NF-κB inhibiting protein ABIN (10). Studies also show that A20 contains site-specific ubiquitin modifying activity that can contribute to its biological functions (11,12). The amino-terminus of A20 contains de-ubiquitinating (DUB) activity for Lys63 branches, such as those found in TRAF6 and RIP, while the carboxyl-terminus contains ubiquitin ligase (E3) activity for Lys48 branches of the same substrates and leads to their degradation (12).

$260
200 µl
$630
600 µl
APPLICATIONS
REACTIVITY
Guinea Pig, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: p38 MAP kinase (MAPK), also called RK (1) or CSBP (2), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (1-4). Four isoforms of p38 MAPK, p38α, β, γ (also known as Erk6 or SAPK3), and δ (also known as SAPK4) have been identified. Similar to the SAPK/JNK pathway, p38 MAPK is activated by a variety of cellular stresses including osmotic shock, inflammatory cytokines, lipopolysaccharide (LPS), UV light, and growth factors (1-5). MKK3, MKK6, and SEK activate p38 MAPK by phosphorylation at Thr180 and Tyr182. Activated p38 MAPK has been shown to phosphorylate and activate MAPKAP kinase 2 (3) and to phosphorylate the transcription factors ATF-2 (5), Max (6), and MEF2 (5-8). SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-imidazole) is a selective inhibitor of p38 MAPK. This compound inhibits the activation of MAPKAPK-2 by p38 MAPK and subsequent phosphorylation of HSP27 (9). SB203580 inhibits p38 MAPK catalytic activity by binding to the ATP-binding pocket, but does not inhibit phosphorylation of p38 MAPK by upstream kinases (10).

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: A20, also referred to as TNF-α-induced protein 3 (TNFAIP3), is cytokine-inducible protein that functions to inhibit apoptosis and activate NF-κB (1,2). It was first identified as a TNF-α inducible primary response gene in human umbilical vein endothelial cells, and encodes a 790-amino acid protein containing seven Cys2/Cys2-zinc finger motifs (3). Constitutive expression of A20 is observed in lymphoid tissues (4), but it is transiently expressed in a variety of cell types in response to inflammatory signals such as TNF-α (3,5), IL-1 (3,5), phorbol esters (6), and LPS (7). Expression of A20 can confer resistance to apoptosis and NF-κB activation triggered by these signals, probably through interference with TRAF (TNF receptor associated factor) family members (8,9), and interaction with the NF-κB inhibiting protein ABIN (10). Studies also show that A20 contains site-specific ubiquitin modifying activity that can contribute to its biological functions (11,12). The amino-terminus of A20 contains de-ubiquitinating (DUB) activity for Lys63 branches, such as those found in TRAF6 and RIP, while the carboxyl-terminus contains ubiquitin ligase (E3) activity for Lys48 branches of the same substrates and leads to their degradation (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Interferon regulatory factors (IRFs) comprise a family of transcription factors that function within the Jak/Stat pathway to regulate interferon (IFN) and IFN-inducible gene expression in response to viral infection (1). IRFs play an important role in pathogen defense, autoimmunity, lymphocyte development, cell growth, and susceptibility to transformation. The IRF family includes nine members: IRF-1, IRF-2, IRF-9/ISGF3γ, IRF-3, IRF-4 (Pip/LSIRF/ICSAT), IRF-5, IRF-6, IRF-7, and IRF-8/ICSBP. All IRF proteins share homology in their amino-terminal DNA-binding domains. IRF family members regulate transcription through interactions with proteins that share similar DNA-binding motifs, such as IFN-stimulated response elements (ISRE), IFN consensus sequences (ICS), and IFN regulatory elements (IRF-E) (2).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$303
200 µl
$717
600 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Pig, Rat, S. cerevisiae

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: p38 MAP kinase (MAPK), also called RK (1) or CSBP (2), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (1-4). Four isoforms of p38 MAPK, p38α, β, γ (also known as Erk6 or SAPK3), and δ (also known as SAPK4) have been identified. Similar to the SAPK/JNK pathway, p38 MAPK is activated by a variety of cellular stresses including osmotic shock, inflammatory cytokines, lipopolysaccharide (LPS), UV light, and growth factors (1-5). MKK3, MKK6, and SEK activate p38 MAPK by phosphorylation at Thr180 and Tyr182. Activated p38 MAPK has been shown to phosphorylate and activate MAPKAP kinase 2 (3) and to phosphorylate the transcription factors ATF-2 (5), Max (6), and MEF2 (5-8). SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-imidazole) is a selective inhibitor of p38 MAPK. This compound inhibits the activation of MAPKAPK-2 by p38 MAPK and subsequent phosphorylation of HSP27 (9). SB203580 inhibits p38 MAPK catalytic activity by binding to the ATP-binding pocket, but does not inhibit phosphorylation of p38 MAPK by upstream kinases (10).