Microsize antibodies for $99 | Learn More >>

Polyclonal Antibody Steroid Hormone Receptor Activity

Also showing Polyclonal Antibody Western Blotting Steroid Hormone Receptor Activity

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Reverse orientation c-erbA gene α (Rev-erbα, EAR-1, or NR1D1) is a widely expressed member of the orphan nuclear receptor family of proteins (1). Rev-erbα is highly expressed in adipose tissue, skeletal muscle, brain and liver, and regulates cellular proliferation and differentiation. Expression increases during differentiation in adipocytes and ectopic expression of Rev-erbα potentiates the adipocyte differentiation of 3T3-L1 cells (2). In addition, expression oscillates with circadian rhythm in liver cells and Rev-erbα regulates expression of BMAL1, ApoA-I and ApoC-III, all key regulators of circadian rhythm (3-7). Phosphorylation of Rev-erbα Ser55 and Ser59 by GSK-3β appears to stabilize Rev-erbα protein levels and is important for synchronizing and maintaining the circadian clock (8). Rev-erbα also regulates inflammation by targeting the NF-κB responsive genes IL-6 and COX-2 (9). Rev-erbα lacks the activation function 2 domain required for ligand-dependent activation of transcription by other members of the nuclear receptor family; thus it behaves as a constitutive repressor protein, recruiting the nuclear receptor co-repressor (N-CoR)/HDAC3 complex to target genes to repress transcription (10).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Human progesterone receptor (PR) is expressed as two forms: the full length PR-B and the short form PR-A. PR-A lacks the first 164 amino acid residues of PR-B (1,2). Both PR-A and PR-B are ligand activated, but differ in their relative ability to activate target gene transcription (3,4). The activity of PR is regulated by phosphorylation; at least seven serine residues are phosphorylated in its amino-terminal domain. Three sites (Ser81, Ser102, and Ser162) are unique to full length PR-B, while other sites (Ser190, Ser294, Ser345, and Ser400) are shared by both isoforms (5). Phosphorylation of PR-B at Ser190 (equivalent to Ser26 of PR-A) is catalyzed by CDK2 (6). Mutation of Ser190 results in decreased activity of PR (7), suggesting that the phosphorylation at Ser190 may be critical to its biological function.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Human progesterone receptor (PR) is expressed as two forms: the full length PR-B and the short form PR-A. PR-A lacks the first 164 amino acid residues of PR-B (1,2). Both PR-A and PR-B are ligand activated, but differ in their relative ability to activate target gene transcription (3,4). The activity of PR is regulated by phosphorylation; at least seven serine residues are phosphorylated in its amino-terminal domain. Three sites (Ser81, Ser102, and Ser162) are unique to full length PR-B, while other sites (Ser190, Ser294, Ser345, and Ser400) are shared by both isoforms (5). Phosphorylation of PR-B at Ser190 (equivalent to Ser26 of PR-A) is catalyzed by CDK2 (6). Mutation of Ser190 results in decreased activity of PR (7), suggesting that the phosphorylation at Ser190 may be critical to its biological function.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Human progesterone receptor (PR) is expressed as two forms: the full length PR-B and the short form PR-A. PR-A lacks the first 164 amino acid residues of PR-B (1,2). Both PR-A and PR-B are ligand activated, but differ in their relative ability to activate target gene transcription (3,4). The activity of PR is regulated by phosphorylation; at least seven serine residues are phosphorylated in its amino-terminal domain. Three sites (Ser81, Ser102, and Ser162) are unique to full length PR-B, while other sites (Ser190, Ser294, Ser345, and Ser400) are shared by both isoforms (5). Phosphorylation of PR-B at Ser190 (equivalent to Ser26 of PR-A) is catalyzed by CDK2 (6). Mutation of Ser190 results in decreased activity of PR (7), suggesting that the phosphorylation at Ser190 may be critical to its biological function.

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Human progesterone receptor (PR) is expressed as two forms: the full length PR-B and the short form PR-A. PR-A lacks the first 164 amino acid residues of PR-B (1,2). Both PR-A and PR-B are ligand activated, but differ in their relative ability to activate target gene transcription (3,4). The activity of PR is regulated by phosphorylation; at least seven serine residues are phosphorylated in its amino-terminal domain. Three sites (Ser81, Ser102, and Ser162) are unique to full length PR-B, while other sites (Ser190, Ser294, Ser345, and Ser400) are shared by both isoforms (5). Phosphorylation of PR-B at Ser190 (equivalent to Ser26 of PR-A) is catalyzed by CDK2 (6). Mutation of Ser190 results in decreased activity of PR (7), suggesting that the phosphorylation at Ser190 may be critical to its biological function.

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Human progesterone receptor (PR) is expressed as two forms: the full length PR-B and the short form PR-A. PR-A lacks the first 164 amino acid residues of PR-B (1,2). Both PR-A and PR-B are ligand activated, but differ in their relative ability to activate target gene transcription (3,4). The activity of PR is regulated by phosphorylation; at least seven serine residues are phosphorylated in its amino-terminal domain. Three sites (Ser81, Ser102, and Ser162) are unique to full length PR-B, while other sites (Ser190, Ser294, Ser345, and Ser400) are shared by both isoforms (5). Phosphorylation of PR-B at Ser190 (equivalent to Ser26 of PR-A) is catalyzed by CDK2 (6). Mutation of Ser190 results in decreased activity of PR (7), suggesting that the phosphorylation at Ser190 may be critical to its biological function.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Testicular receptor 4 (TR4), also called TAK1 or NR2C2, is an orphan receptor in a distinct subclass of the steroid hormone nuclear receptor superfamily along with TR2 (1,2). TR4 forms heterodimers with TR2 and binds to DNA elements containing direct repeats (DRs) (3). TR4 plays a role in various processes, including neurogenesis, spermatogenesis, RNA metabolism, and protein translation (4-6). TR4 can interact with other hormone receptors such as AR and ER to influence protein-protein binding and target gene inactivation (7,8). High expression of TR4 correlates with prostate cancer metastasis and invasion through downstream targets such as CCL2 and Ezh2 (9-10). Expression of TR4 in other cancers such as NSCLC and testicular germ cell tumors has also been associated with poor prognosis (11-12).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The human retinoid X receptors (RXRs) are encoded by three distinct genes (RXRα, RXRβ, and RXRγ) and bind selectively and with high affinity to the vitamin A derivative, 9-cis-retinoic acid. RXRs are type-II nuclear hormone receptors that are largely localized to the nuclear compartment independent of ligand binding. Nuclear RXRs form heterodimers with nuclear hormone receptor subfamily 1 proteins, including thyroid hormone receptor, retinoic acid receptors, vitamin D receptor, peroxisome proliferator-activated receptors, liver X receptors, and farnesoid X receptor (1). Since RXRs heterodimerize with multiple nuclear hormone receptors, they play a central role in transcriptional control of numerous hormonal signaling pathways by binding to cis-acting response elements in the promoter/enhancer region of target genes (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: GCNF (Germ Cell Nuclear Factor), also known as NR6A1 (Nuclear Receptor Subfamily 6 Group A member), is an orphan member of the nuclear receptor gene superfamily (1). It has been shown to be expressed in the nervous system during development and during specific stages in maturing germ cells of the ovary and testis in the adult, and has probable roles in gametogenesis, neurogenesis, and normal embryonic development during gastrulation (1,2). Inactivation of GCNF in mouse results in abnormal posterior development, impaired midbrain development, insufficient closure of the neural tube, and eventual embryonic death (3). GCNF has been shown to be a repressor of OCT-4 and of the protamine genes (4,5) and plays a critical role in the control of gene expression during embryogenesis and spermatogenesis (2,6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: Retinoids (vitamin A and its active retinoic acid derivatives) are non-steroid hormones that regulate cell proliferation, differentiation and apoptosis. Retinoic acid receptors (RARalpha, -beta and -gamma) and retinoid X receptors (RXRalpha, -beta and -gamma) are nuclear receptors that function as RAR-RXR heterodimers or RXR homodimers (1-2). In response to retinoid binding, these dimers control gene expression by binding to specific retinoic acid response elements, by recruiting cofactors and the transcriptional machinery, and by indirectly regulating chromatin structure. Finally, ligand binding and phosphorylation of RARalpha by JNK at Thr181, Ser445 and Ser461 controls the stability of RAR-RXR through the ubiquitin-proteasome pathway (3-4). At least four distinct genetic lesions affect RARalpha and result in acute promyelocytic leukemia (APL). The t(15;17) translocation that results in the PML-RARalpha fusion protein is responsible for more than 99% of APL cases, and the fusion protein inhibits PML-dependent apoptotic pathways in a dominant negative fashion. In addition PML-RARalpha inhibits transcription of retinoic acid target genes by recruiting co-repressors, attenuating myeloid differentiation (5-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The human retinoid X receptors (RXRs) are encoded by three distinct genes (RXRα, RXRβ, and RXRγ) and bind selectively and with high affinity to the vitamin A derivative, 9-cis-retinoic acid. RXRs are type-II nuclear hormone receptors that are largely localized to the nuclear compartment independent of ligand binding. Nuclear RXRs form heterodimers with nuclear hormone receptor subfamily 1 proteins, including thyroid hormone receptor, retinoic acid receptors, vitamin D receptor, peroxisome proliferator-activated receptors, liver X receptors, and farnesoid X receptor (1). Since RXRs heterodimerize with multiple nuclear hormone receptors, they play a central role in transcriptional control of numerous hormonal signaling pathways by binding to cis-acting response elements in the promoter/enhancer region of target genes (2).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The human retinoid X receptors (RXRs) are encoded by three distinct genes (RXRα, RXRβ, and RXRγ) and bind selectively and with high affinity to the vitamin A derivative, 9-cis-retinoic acid. RXRs are type-II nuclear hormone receptors that are largely localized to the nuclear compartment independent of ligand binding. Nuclear RXRs form heterodimers with nuclear hormone receptor subfamily 1 proteins, including thyroid hormone receptor, retinoic acid receptors, vitamin D receptor, peroxisome proliferator-activated receptors, liver X receptors, and farnesoid X receptor (1). Since RXRs heterodimerize with multiple nuclear hormone receptors, they play a central role in transcriptional control of numerous hormonal signaling pathways by binding to cis-acting response elements in the promoter/enhancer region of target genes (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the ligand-activated nuclear receptor superfamily and functions as a transcriptional activator (1). PPARγ is preferentially expressed in adipocytes as well as in vascular smooth muscle cells and macrophage (2). Besides its role in mediating adipogenesis and lipid metabolism (2), PPARγ also modulates insulin sensitivity, cell proliferation and inflammation (3). PPARγ transcriptional activity is inhibited by MAP kinase phosphorylation of PPARγ at Ser84 (4,5).