20% off purchase of 3 or more products* | Learn More >>

Polyclonal Antibody Translation Regulator Activity

Also showing Polyclonal Antibody Western Blotting Translation Regulator Activity

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Insulin-like growth factor-II mRNA-binding proteins (IMPs) belong to a family of zipcode-binding proteins (1,2). Three members of this family, IMP1, IMP2, and IMP3, have been identified (1,2). They contain two RNA recognition motifs, four K homology domains, and were found to function in mRNA localization, turnover, and translation control (1,2). Research studies have implicated these proteins in a variety of physiological and pathological processes, such as growth and development (3), testicular neoplasia (4), and melanocytic neoplasia (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Protein kinase R (PKR) is transcriptionally induced by interferon and activated by double-stranded RNA (dsRNA). PKR inhibits translation initiation through phosphorylation of the α subunit of the initiation factor eIF2 (eIF2α) and also controls the activation of several transcription factors, such as NF-κB, p53, and the Stats. In addition, PKR mediates apoptosis induced by many different stimuli, such as LPS, TNF-α, viral infection, and serum starvation (1,2). Activation of PKR by dsRNA results in PKR dimerization and autophosphorylation of Thr446 and Thr451 in the activation loop. Substitution of threonine for alanine at position 451 completely inactivated PKR, while a mutant with a threonine to alanine substitution at position 446 was partially active (3). Research studies have implicated PKR activation in the pathologies of neurodegenerative diseases, including Alzheimer's disease (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein kinase R (PKR) is transcriptionally induced by interferon and activated by double-stranded RNA (dsRNA). PKR inhibits translation initiation through phosphorylation of the α subunit of the initiation factor eIF2 (eIF2α) and also controls the activation of several transcription factors, such as NF-κB, p53, and the Stats. In addition, PKR mediates apoptosis induced by many different stimuli, such as LPS, TNF-α, viral infection, and serum starvation (1,2). Activation of PKR by dsRNA results in PKR dimerization and autophosphorylation of Thr446 and Thr451 in the activation loop. Substitution of threonine for alanine at position 451 completely inactivated PKR, while a mutant with a threonine to alanine substitution at position 446 was partially active (3). Research studies have implicated PKR activation in the pathologies of neurodegenerative diseases, including Alzheimer's disease (4,5).