Microsize antibodies for $99 | Learn More >>

Polyclonal Antibody Western Blotting D Melanogaster

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Protein phosphatase type 2A (PP2A) is an essential protein serine/threonine phosphatase that is conserved in all eukaryotes. PP2A is a key enzyme within various signal transduction pathways as it regulates fundamental cellular activities such as DNA replication, transcription, translation, metabolism, cell cycle progression, cell division, apoptosis and development (1-3). The core enzyme consists of catalytic C and regulatory A (or PR65) subunits, with each subunit represented by α and β isoforms (1). Additional regulatory subunits belong to four different families of unrelated proteins. Both the B (or PR55) and B' regulatory protein families contain α, β, γ and δ isoforms, with the B' family also including an ε protein. B'' family proteins include PR72, PR130, PR59 and PR48 isoforms, while striatin (PR110) and SG2NA (PR93) are both members of the B''' regulatory protein family. These B subunits competitively bind to a shared binding site on the core A subunit (1). This variable array of holoenzyme components, particularly regulatory B subunits, allows PP2A to act in a diverse set of functions. PP2A function is regulated by expression, localization, holoenzyme composition and post-translational modification. Phosphorylation of PP2A at Tyr307 by Src occurs in response to EGF or insulin and results in a substantial reduction of PP2A activity (4). Reversible methylation on the carboxyl group of Leu309 of PP2A has been observed (5,6). Methylation alters the conformation of PP2A, as well as its localization and association with B regulatory subunits (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Protein phosphatase type 2A (PP2A) is an essential protein serine/threonine phosphatase that is conserved in all eukaryotes. PP2A is a key enzyme within various signal transduction pathways as it regulates fundamental cellular activities such as DNA replication, transcription, translation, metabolism, cell cycle progression, cell division, apoptosis and development (1-3). The core enzyme consists of catalytic C and regulatory A (or PR65) subunits, with each subunit represented by α and β isoforms (1). Additional regulatory subunits belong to four different families of unrelated proteins. Both the B (or PR55) and B' regulatory protein families contain α, β, γ and δ isoforms, with the B' family also including an ε protein. B'' family proteins include PR72, PR130, PR59 and PR48 isoforms, while striatin (PR110) and SG2NA (PR93) are both members of the B''' regulatory protein family. These B subunits competitively bind to a shared binding site on the core A subunit (1). This variable array of holoenzyme components, particularly regulatory B subunits, allows PP2A to act in a diverse set of functions. PP2A function is regulated by expression, localization, holoenzyme composition and post-translational modification. Phosphorylation of PP2A at Tyr307 by Src occurs in response to EGF or insulin and results in a substantial reduction of PP2A activity (4). Reversible methylation on the carboxyl group of Leu309 of PP2A has been observed (5,6). Methylation alters the conformation of PP2A, as well as its localization and association with B regulatory subunits (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Eukaryotic elongation factor 2 (eEF2) catalyzes the translocation of peptidyl-tRNA from the A site to the P site on the ribosome. It has been shown that phosphorylation of eEF2 at threonine 56 by eEF2 kinase inhibits its activity (1-4). eEF2 kinase is normally dependent on Ca2+ ions and calmodulin (5,6). eEF2 kinase can also be activated by PKA in response to elevated cAMP levels (7-9), which are generally increased in stress- or starvation-related conditions. A variety of treatments known to raise intracellular Ca2+ or cAMP levels have been shown to result in increased phosphorylation of eEF2, and thus to inhibit peptide-chain elongation. The inactive phosphorylated eEF2 can be converted to its active nonphosphorylated form by a protein phosphatase, most likely a form of protein phosphatase-2A (PP-2A). Insulin, which activates protein synthesis in a wide range of cell types, induces rapid dephosphorylation of eEF2 through mTOR signaling and may involve modulation of the activity of the PP-2A or the eEF2 kinase or both (10).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, D. melanogaster, Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Cadherins are a superfamily of transmembrane glycoproteins that contain cadherin repeats of approximately 100 residues in their extracellular domain. Cadherins mediate calcium-dependent cell-cell adhesion and play critical roles in normal tissue development (1). The classic cadherin subfamily includes N-, P-, R-, B-, and E-cadherins, as well as about ten other members that are found in adherens junctions, a cellular structure near the apical surface of polarized epithelial cells. The cytoplasmic domain of classical cadherins interacts with β-catenin, γ-catenin (also called plakoglobin), and p120 catenin. β-catenin and γ-catenin associate with α-catenin, which links the cadherin-catenin complex to the actin cytoskeleton (1,2). While β- and γ-catenin play structural roles in the junctional complex, p120 regulates cadherin adhesive activity and trafficking (1-4). Investigators consider E-cadherin an active suppressor of invasion and growth of many epithelial cancers (1-3). Research studies indicate that cancer cells have upregulated N-cadherin in addition to loss of E-cadherin. This change in cadherin expression is called the "cadherin switch." N-cadherin cooperates with the FGF receptor, leading to overexpression of MMP-9 and cellular invasion (3). Research studies have shown that in endothelial cells, VE-cadherin signaling, expression, and localization correlate with vascular permeability and tumor angiogenesis (5,6). Investigators have also demonstrated that expression of P-cadherin, which is normally present in epithelial cells, is also altered in ovarian and other human cancers (7,8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Cytochrome c is a well conserved electron-transport protein and is part of the respiratory chain localized to mitochondrial intermembrane space (1). Upon apoptotic stimulation, cytochrome c released from mitochondria associates with procaspase-9 (47 kDa)/Apaf 1. This complex processes caspase-9 from inactive proenzyme to its active form (2). This event further triggers caspase-3 activation and eventually leads to apoptosis (3).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: Mutations in Doublecortin cause Lissencephaly (smooth brain), a neuronal migration disorder characterized by epilepsy and mental retardation (1). Doublecortin is a microtubule associated protein that stabilizes and bundles microtubules. A conserved doublecortin domain mediates the interaction with microtubules, and interestingly most missense mutations cluster in this domain (2). Kinases JNK, CDK5 and PKA phosphorylate doublecortin. JNK phosphorylates Thr321, Thr331 and Ser334 while PKA phosphorylates Ser47 and CDK5 phosphorylates Ser297 (3-5). Phosphorylation of Ser297 lowers the affinity of doublecortin to microtubules. Furthermore, mutations of Ser297 result in migration defects (5).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: In both prokaryotic and eukaryotic cells the misfolding and aggregation of proteins during biogenesis and under conditions of cellular stress are prevented by molecular chaperones (1-3). HSP60 has primarily been known as a mitochondrial protein that is important for folding key proteins after import into the mitochondria (4). Research studies have shown that a significant amount of HSP60 is also present in the cytosol of many cells, and that it is induced by stress, inflammatory and immune responses, and autoantibodies correlated with Alzheimer's, coronary artery diseases, MS, and diabetes (5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: In both prokaryotic and eukaryotic cells the misfolding and aggregation of proteins during biogenesis and under conditions of cellular stress are prevented by molecular chaperones (1-3). HSP60 has primarily been known as a mitochondrial protein that is important for folding key proteins after import into the mitochondria (4). Research studies have shown that a significant amount of HSP60 is also present in the cytosol of many cells, and that it is induced by stress, inflammatory and immune responses, and autoantibodies correlated with Alzheimer's, coronary artery diseases, MS, and diabetes (5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: HSP70 and HSP90 are molecular chaperones expressed constitutively under normal conditions to maintain protein homeostasis and are induced upon environmental stress (1). Both HSP70 and HSP90 are able to interact with unfolded proteins to prevent irreversible aggregation and catalyze the refolding of their substrates in an ATP- and co-chaperone-dependent manner (1). HSP70 has a broad range of substrates including newly synthesized and denatured proteins, while HSP90 tends to have a more limited subset of substrates, most of which are signaling molecules. HSP70 and HSP90 often function collaboratively in a multi-chaperone system, which requires a minimal set of co-chaperones: HSP40, Hop, and p23 (2,3). The co-chaperones either regulate the intrinsic ATPase activity of the chaperones or recruit chaperones to specific substrates or subcellular compartments (1,4). When the ubiquitin ligase CHIP associates with the HSP70/HSP90 complex as a cofactor, the unfolded substrates are subjected to degradation by the proteasome (4). The biological functions of HSP70/HSP90 extend beyond their chaperone activity. They are essential for the maturation and inactivation of nuclear hormones and other signaling molecules (1,3). They also play a role in vesicle formation and protein trafficking (2).

$303
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster

Application Methods: Western Blotting

Background: Cell death in the fruit fly Drosophila melanogaster is regulated by many of the same stimuli as mammalian cell death (1). The Drosophila genome contains seven caspase genes; three encode initiator caspases and four encode effector caspases (reviewed in 2). drICE is a cysteine protease that cleaves baculovirus p35 and lamin DmO in vitro and acts downstream of rpr (3). drICE is proteolytically processed during apoptosis into active p21 and p12 subunits. Comparison of the in vivo activity between drICE and Dcp-1 has shown that drICE is a more effective inducer of apoptosis than Dcp-1, which plays a role in determining the rate of cell death (4).

$303
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Cell death in the fruit fly Drosophila melanogaster is regulated by many of the same stimuli as mammalian cell death (1). The Drosophila genome contains seven caspase genes; three encode initiator caspases, and four encode effector caspases (reviewed in (2)). The Drosophila effector caspase, death caspase-1 (Dcp-1), is a critical executioner of apoptosis. It is involved in the proteolytic cleavage of many key proteins, such as the nuclear enzyme poly (ADP-ribose) polymerase (PARP). The activation of Dcp-1 requires proteolytic processing of its inactive zymogen into active p22 and p13 fragments (3). Comparison of the in vivo activity between DrICE and Dcp-1 has shown that DrICE is a more effective inducer of apoptosis than Dcp-1, which instead plays a role in determining the rate of cell death (4).

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat, S. cerevisiae

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Frozen), Immunohistochemistry (Paraffin), Western Blotting

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: The cytoskeleton consists of three types of cytosolic fibers: microtubules, microfilaments (actin filaments), and intermediate filaments. Globular tubulin subunits comprise the microtubule building block, with α/β-tubulin heterodimers forming the tubulin subunit common to all eukaryotic cells. γ-tubulin is required to nucleate polymerization of tubulin subunits to form microtubule polymers. Many cell movements are mediated by microtubule action, including the beating of cilia and flagella, cytoplasmic transport of membrane vesicles, chromosome alignment during meiosis/mitosis, and nerve-cell axon migration. These movements result from competitive microtubule polymerization and depolymerization or through the actions of microtubule motor proteins (1).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Type 1 protein phosphatase (PP1), a serine/threonine phosphatase, is highly conserved in eukaryotic cells. Four isoforms of PP1 have been characterized: PP1α, PP1δ, PP1γ1 and PP1γ2 (1). Involvement in cell cycle regulation is one of the biological functions of PP1 (1). It has been illustrated that PP1 dephosphorylates Rb and cdc25 during mitosis (2,3). A cell cycle-dependent phosphorylation at Thr320 of PP1α by cdc2 kinase inhibits PP1α activity (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Actin nucleation, the formation of new actin filaments from existing filaments, affects actin filament structure during cell motility, division, and intracellular trafficking. An important actin nucleation protein complex is the highly conserved ARP2/3 complex, consisting of ARP2, ARP3, and ARPC1-5. The ARP2/3 complex promotes branching of an existing actin filament and formation of a daughter filament following activation by nucleation-promoting factors, such as WASP/WAVE or cortactin (1). The formation of podosomes, small cellular projections that degrade the extracellular matrix, is enhanced by ARP2/3 complex action. ARP2/3 competes with caldesmon, an actin binding protein shown to negatively affect podosome formation (2). Along with N-WASP, the ARP2/3 complex regulates nuclear actin filament nucleation and controls actin polymerization during transcription (3).

$122
20 µl
$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Myosin is composed of six polypeptide chains: two identical heavy chains and two pairs of light chains. Myosin light chain 2 (MLC2), also known as myosin regulatory light chain (MRLC), RLC, or LC20, has many isoforms depending on its distribution. In smooth muscle, MLC2 is phosphorylated at Thr18 and Ser19 by myosin light chain kinase (MLCK) in a Ca2+/calmodulin-dependent manner (1). This phosphorylation is correlated with myosin ATPase activity and smooth muscle contraction (2). ROCK also phosphorylates Ser19 of smooth muscle MLC2, which regulates the assembly of stress fibers (3). Phosphorylation of smooth muscle MLC2 at Ser1/Ser2 and Ser9 by PKC and cdc2 has been reported to inhibit myosin ATPase activity (4,5). Phosphorylation by cdc2 controls the timing of cytokinesis (5). Transgenic mice lacking phosphorylation sites on the cardiac muscle isoform show morphological and functional abnormalities (6).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Pig, Rat, S. cerevisiae

Application Methods: Western Blotting

Background: The 21 kDa guanine-nucleotide binding proteins (K-Ras, H-Ras, and N-Ras) cycle between active (GTP-bound) and inactive (GDP-bound) forms (1). Receptor tyrosine kinases and G protein-coupled receptors activate Ras, which then stimulates the Raf-MEK-MAPK pathway (2-4). GTPase-activating proteins (GAP) normally facilitate the inactivation of Ras. However, research studies have shown that in 30% of human tumors, point mutations in Ras prevent the GAP-mediated inhibition of this pathway (5). The most common oncogenic Ras mutation found in tumors is Gly12 to Asp12 (G12D), which prevents Ras inactivation, possibly by increasing the overall rigidity of the protein (5,6).

$303
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster

Application Methods: Western Blotting

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$303
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Mouse, Rat

Application Methods: Western Blotting

Background: SAPK/Erk kinase (SEK1), also known as MKK4 or Jun kinase kinase (JNKK), activates the MAP kinase homologues SAPK and JNK in response to various cellular stresses and inflammatory cytokines (1-3). Activation of SEK1 occurs through MEKK phosphorylation of serine and threonine residues at positions 257 and 261, respectively. Like MEK, SEK is a dual-specificity protein kinase that phosphorylates SAPK/JNK at a conserved T*PY* site in its activation loop (4). Phosphorylation by Akt at Ser80 inhibits SEK1 and suppresses stress-activated signal transduction (5).

$303
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human

Application Methods: Western Blotting

Background: p70 S6 kinase is a mitogen activated Ser/Thr protein kinase that is required for cell growth and G1 cell cycle progression (1,2). p70 S6 kinase phosphorylates the S6 protein of the 40S ribosomal subunit and is involved in translational control of 5' oligopyrimidine tract mRNAs (1). A second isoform, p85 S6 kinase, is derived from the same gene and is identical to p70 S6 kinase except for 23 extra residues at the amino terminus, which encode a nuclear localizing signal (1). Both isoforms lie on a mitogen activated signaling pathway downstream of phosphoinositide-3 kinase (PI-3K) and the target of rapamycin, FRAP/mTOR, a pathway distinct from the Ras/MAP kinase cascade (1). The activity of p70 S6 kinase is controlled by multiple phosphorylation events located within the catalytic, linker and pseudosubstrate domains (1). Phosphorylation of Thr229 in the catalytic domain and Thr389 in the linker domain are most critical for kinase function (1). Phosphorylation of Thr389, however, most closely correlates with p70 kinase activity in vivo (3). Prior phosphorylation of Thr389 is required for the action of phosphoinositide 3-dependent protein kinase 1 (PDK1) on Thr229 (4,5). Phosphorylation of this site is stimulated by growth factors such as insulin, EGF and FGF, as well as by serum and some G-protein-coupled receptor ligands, and is blocked by wortmannin, LY294002 (PI-3K inhibitor) and rapamycin (FRAP/mTOR inhibitor) (1,6,7). Ser411, Thr421 and Ser424 lie within a Ser-Pro-rich region located in the pseudosubstrate region (1). Phosphorylation at these sites is thought to activate p70 S6 kinase via relief of pseudosubstrate suppression (1,2). Another LY294002 and rapamycin sensitive phosphorylation site, Ser371, is an in vitro substrate for mTOR and correlates well with the activity of a partially rapamycin resistant mutant p70 S6 kinase (8).