Microsize antibodies for $99 | Learn More >>

Polyclonal Antibody Western Blotting Negative Regulation of Apoptosis

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Western Blotting

Background: The tumor necrosis factor receptor family, which includes TNF-RI, Fas, DR3, DR4, DR5, and DR6, plays an important role in the regulation of apoptosis in various physiological systems (1,2). The receptors are activated by a family of cytokines that include TNF, FasL, and TRAIL. They are characterized by a highly conserved extracellular region containing cysteine-rich repeats and a conserved intracellular region of about 80 amino acids termed the death domain (DD). The DD is important for transducing the death signal by recruiting other DD containing adaptor proteins (FADD, TRADD, RIP) to the death-inducing signaling complex (DISC), resulting in activation of caspases.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The Bcl-2 family regulates apoptosis in response to a wide range of stimuli through control of mitochondrial cytochrome c release and caspase activation (1-3). Cytosolic Apaf-1 forms a complex with caspase-9 in the presence of cytochrome c and dATP, ultimately leading to caspase-9 activation and subsequent activation of caspase-3. A large number of proteins have been found to interact with Bcl-2 and other family members that have been shown to help regulate apoptosis. Aven was identified in a yeast two-hybrid screen as a bcl-xL interacting protein (4). It also interacts with other anti-apoptotic family members, including Bcl-2, but fails to interact with pro-apopotic proteins Bax and Bak. Aven inhibits apoptosis and enhances anti-apopotic activity of Bcl-xL. It interferes with association with Apaf-1 and activation of caspase-9. Aven overexpression is associated with poor prognosis in acute lymphoblastic leukemia (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Interleukin-2 (IL-2) is a T cell stimulatory cytokine best known for inducing T cell proliferation and NK cell proliferation and activation (1,2). IL-2 also promotes peripheral development of regulatory T cells (Tregs) (3,4). Conversely, IL-2 is involved in the activation-induced cell death (AICD) that is observed post T cell expansion by increasing levels of Fas on CD4+ T cells (5). The effects of IL-2 are mediated through a trimeric receptor complex consisting of IL-2Rα, IL-2Rβ, and the common gamma chain, γc (1,2). IL-2Rα binds exclusively to IL-2 with low affinity and increases the binding affinity of the whole receptor complex including IL-2Rβ and γc subunits. IL-15 also binds to IL-2Rβ (1,2). γc is used by other cytokines including IL-4, IL-7, IL-9, IL-15, and IL-21 (1,2). Binding of IL-2 initiates signaling cascades involving Jak1, Jak3, Stat5, and the PI3K/Akt pathways (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: FAM129B/Niban-like protein 1 (family with sequence similarity 129, member B) belongs to a poorly characterized family of Niban proteins that also includes FAM129A/Niban and FAM129C/Niban-like protein 2. FAM129A/Niban is implicated in the ER stress response and is upregulated at the protein level in thyroid carcinoma (1,2). FAM129C/Niban-like protein 2 is preferentially expressed in B-cells and is one of five biomarkers upregulated in whole blood from patients with colorectal carcinoma (3,4). FAM129B is broadly expressed and has been shown to be a downstream target of B-Raf in melanoma cells (5). Though FAM129B does not appear to regulate cell growth and division, phosphorylation of FAM129B by B-Raf is essential for the invasive potential of melanoma and non-melanoma cell lines (5). Deletion of FAM129B in melanoma cells significantly impairs B-Raf/MEK/Erk-dependent invasion into the extracellular matrix (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Myeloperoxidase (MPO) is a peroxidase enzyme that is part of the host defense system of polymorphonuclear leukocytes (reviewed in 1). The gene for MPO was cloned independently from several laboratories (2-5). A decrease in MPO expression was noticed upon differentiation of HL-60 cells (5). MPO catalyzes the reaction of hydrogen peroxide and chloride (or other halides) to produce hypochlorous acid and other potent antimicrobial oxidants. Knockout mice of MPO are impaired in clearing select microbial infections (6). Processing of mature MPO from an initial 80-90 kDa translation product involves insertion of a heme moiety, glycosylation, and proteolytic cleavage. The mature protein is a tetramer of two heavy chains (60 kDa) and two light chains (12 kDa). It is abundantly expressed in neutrophils and monocytes and secreted during their activation. Heightened MPO levels have been associated with tissue damage and a number of pathological conditions (1).

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat, S. cerevisiae

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Immunoprecipitation, Western Blotting

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The Bcl-2 family consists of a number of evolutionarily conserved proteins containing Bcl-2 homology domains (BH) that regulate apoptosis through control of mitochondrial membrane permeability and release of cytochrome c (1-3). Four BH domains have been identified (BH1-4) that mediate protein interactions. The family can be separated into three groups based upon function and sequence homology: pro-survival members include Bcl-2, Bcl-xL, Mcl-1, A1 and Bcl-w; pro-apoptotic proteins include Bax, Bak and Bok; and "BH3 only" proteins Bad, Bik, Bid, Puma, Bim, Bmf, Noxa and Hrk. Interactions between death-promoting and death-suppressing Bcl-2 family members has led to a rheostat model in which the ratio of pro-apoptotic and anti-apoptotic proteins controls cell fate (4). Thus, pro-survival members exert their behavior by binding to and antagonizing death-promoting members. In general, the "BH3-only members" can bind to and antagonize the pro-survival proteins leading to increased apoptosis (5). While some redundancy of this system likely exists, tissue specificity, transcriptional and post-translational regulation of many of these family members can account for distinct physiological roles.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Actin, a ubiquitous eukaryotic protein, is the major component of the cytoskeleton. At least six isoforms are known in mammals. Nonmuscle β- and γ-actin, also known as cytoplasmic actin, are predominantly expressed in nonmuscle cells, controlling cell structure and motility (1). α-cardiac and α-skeletal actin are expressed in striated cardiac and skeletal muscles, respectively; two smooth muscle actins, α- and γ-actin, are found primarily in vascular smooth muscle and enteric smooth muscle, respectively. These actin isoforms regulate the contractile potential of muscle cells (1). Actin exists mainly as a fibrous polymer, F-actin. In response to cytoskeletal reorganizing signals during processes such as cytokinesis, endocytosis, or stress, cofilin promotes fragmentation and depolymerization of F-actin, resulting in an increase in the monomeric globular form, G-actin (2). The ARP2/3 complex stabilizes F-actin fragments and promotes formation of new actin filaments (2). Research studies have shown that actin is hyperphosphorylated in primary breast tumors (3). Cleavage of actin under apoptotic conditions has been observed in vitro and in cardiac and skeletal muscle, as shown in research studies (4-6). Actin cleavage by caspase-3 may accelerate ubiquitin/proteasome-dependent muscle proteolysis (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Translationally controlled tumor protein (TCTP/p23/HRF) is a ubiquitously expressed and highly conserved protein involved in various cellular processes, such as its role as a histamine releasing factor in chronic allergic disease (1). TCTP binds tubulin in a cell cycle dependent manner and is associated with the mitotic spindle (2). In addition, TCTP interacts with the actin cytoskeleton to regulate cell shape (3). In mitosis, TCTP is phosphorylated by PLK at Ser46, decreasing microtubule stability (4,5). TCTP interacts with the small GTPase Rheb, possibly acting as a GEF, thereby activating the TORC1 pathway and controlling cell growth and proliferation (6,7). TCTP has also been shown to be involved in apoptosis and cell stress (8-11). In cultured cells, reduction in TCTP expression can cause loss of the malignant phenotype (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The 20S proteasome is the major proteolytic enzyme complex involved in intracellular protein degradation. It consists of four stacked rings, each with seven distinct subunits. The two outer layers are identical rings composed of α subunits (called PSMAs), and the two inner layers are identical rings composed of β subunits. While the catalytic sites are located on the β rings (1-3), the α subunits are important for assembly and as binding sites for regulatory proteins (4). Seven different α and ten different β proteasome genes have been identified in mammals (5). PA700, PA28, and PA200 are three major protein complexes that function as activators of the 20S proteasome. PA700 binds polyubiquitin with high affinity and associates with the 20S proteasome to form the 26S proteasome, which preferentially degrades poly-ubiquitinated proteins (1-3). The proteasome has a broad substrate spectrum that includes cell cycle regulators, signaling molecules, tumor suppressors, and transcription factors. By controlling the degradation of these intracellular proteins, the proteasome functions in cell cycle regulation, cancer development, immune responses, protein folding, and disease progression (6-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The 20S proteasome is the major proteolytic enzyme complex involved in intracellular protein degradation. It consists of four stacked rings, each with seven distinct subunits. The two outer layers are identical rings composed of α subunits (called PSMAs), and the two inner layers are identical rings composed of β subunits. While the catalytic sites are located on the β rings (1-3), the α subunits are important for assembly and as binding sites for regulatory proteins (4). Seven different α and ten different β proteasome genes have been identified in mammals (5). PA700, PA28, and PA200 are three major protein complexes that function as activators of the 20S proteasome. PA700 binds polyubiquitin with high affinity and associates with the 20S proteasome to form the 26S proteasome, which preferentially degrades poly-ubiquitinated proteins (1-3). The proteasome has a broad substrate spectrum that includes cell cycle regulators, signaling molecules, tumor suppressors, and transcription factors. By controlling the degradation of these intracellular proteins, the proteasome functions in cell cycle regulation, cancer development, immune responses, protein folding, and disease progression (6-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Grp75, also known as mortalin, is a member of Hsp70 family of chaperone proteins that is not heat-inducible (1,2). This protein is essential for transporting many mitochondrial proteins from the cytoplasm to mitochondria (3). Grp75 inactivates the tumor suppressor p53 (4). Studies found that Grp75 is overexpressed in many tumor tissues and immortalized human cell lines, suggesting its role in the tumor formation (5). Grp75 is also implicated in cell aging, as its overexpression appears to prolong the life span of human fibroblasts (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: SNARK was identified as an SNF1/AMPK-related kinase and member of the AMPK catalytic subunit family (1,2). This enzyme was separately identified as a TNFα-induced SNF1-like kinase 2 (NUAK2) (3). The kinase activity of SNARK/NUAK2 is increased by AMP and AICAR (1). SNARK/NUAK2 activity is regulated by a variety of cellular stresses such as endoplasmic reticulum (ER) stress and oxidative stresses (4), suggesting that SNARK/NUAK2 is a signaling molecule involved in the cell stress response (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The ubiquitin-conjugating (UBC) enzymes HR6A and HR6B are the mammalian orthologues of the Saccharomyces cerevisiae Rad6 gene products (1). In S. cerevisiae, Rad6 facilitates cell cycle progression and ubiquitinates histone H2B (2,3). In vivo phosphorylation of HR6A Ser120 by cyclin-dependent kinases is thought to be important for the coordination and timing of ubiquitination events involved in cell cycle progression (4). In response to DNA damage, HR6A is known to interact physically with p53 and p14ARF, but knockout mice lacking HR6A or HR6B exhibit normal DNA damage responses (5,6). HR6B knockout males exhibit defective spermatogenesis, while HR6A knockout females fail to produce viable offspring (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Translationally controlled tumor protein (TCTP/p23/HRF) is a ubiquitously expressed and highly conserved protein involved in various cellular processes, such as its role as a histamine releasing factor in chronic allergic disease (1). TCTP binds tubulin in a cell cycle dependent manner and is associated with the mitotic spindle (2). In addition, TCTP interacts with the actin cytoskeleton to regulate cell shape (3). In mitosis, TCTP is phosphorylated by PLK at Ser46, decreasing microtubule stability (4,5). TCTP interacts with the small GTPase Rheb, possibly acting as a GEF, thereby activating the TORC1 pathway and controlling cell growth and proliferation (6,7). TCTP has also been shown to be involved in apoptosis and cell stress (8-11). In cultured cells, reduction in TCTP expression can cause loss of the malignant phenotype (12).

$117
20 µl
$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Caspase-3 (CPP-32, Apoptain, Yama, SCA-1) is a critical executioner of apoptosis, as it is either partially or totally responsible for the proteolytic cleavage of many key proteins, such as the nuclear enzyme poly (ADP-ribose) polymerase (PARP) (1). Activation of caspase-3 requires proteolytic processing of its inactive zymogen into activated p17 and p12 fragments. Cleavage of caspase-3 requires the aspartic acid residue at the P1 position (2).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Frozen), Immunohistochemistry (Paraffin), Western Blotting

Background: Heat shock protein (HSP) 27 is one of the small HSPs that are constitutively expressed at different levels in various cell types and tissues. Like other small HSPs, HSP27 is regulated at both the transcriptional and posttranslational levels (1). In response to stress, the HSP27 expression increases several-fold to confer cellular resistance to the adverse environmental change. HSP27 is phosphorylated at Ser15, Ser78, and Ser82 by MAPKAPK-2 as a result of the activation of the p38 MAP kinase pathway (2,3). Phosphorylation of HSP27 causes a change in its tertiary structure, which shifts from large homotypic multimers to dimers and monomers (4). It has been shown that phosphorylation and increased concentration of HSP27 modulates actin polymerization and reorganization (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The 20S proteasome is the major proteolytic enzyme complex involved in intracellular protein degradation. PA700, PA28, and PA200 are three major protein complexes that function as activators of the 20S proteasome. There are three evolutionarily conserved subunits of PA28: PA28α (PSME1), PA28β (PSME2), and PA28γ (PSME3) (1,2). PA28α and PA28β form a heteroheptameric complex and function by binding to the 20S complex at its opening site(s). The PA28α/β complex is present throughout the cell and participates in MHC class I antigen presentation by promoting the generation of antigenic peptides from foreign proteins (2). PA28γ exists in the form of a homoheptamer and is mainly located in the nucleus. The PA28γ complex exerts its function by binding and guiding specific nuclear target proteins to the 20S proteasome for further degradation (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The sequence-specific transcription factor activator protein 2β (AP-2β) is required for normal kidney development (1). AP-2β knockout mice die 1-2 days after birth due to polycystic kidney disease (1). Massive apoptosis occured during kidney deveopment at the end of embryogenesis in these mice (1). Overexpressed AP-2β has been to found to suppress c-myc-induced apoptosis, indicating a role of this transcription factor in cell survival (1). In addition, overexpression of AP-2β is shown to be related to impaired insulin signaling in adipocytes, and is therefore proposed to be a candidate gene that may relate to obesity (2).